报告题目:On the isotropic-nematic phase transition for the liquid crystal
报 告 人:费明稳 副教授(安徽师范大学)
报告时间:2018年11月13日(星期二)上午9:00-10:00
报告地点:4号楼4318室
邀 请 人:金海洋 副教授
欢迎广大师生前往!
数学学院
2018年11月6日
报告摘要:
In this talk, we study the isotropic-nematic phase transition for the nematic liquid crystal based on the Landau-de Gennes $\QQ$-tensor theory. We justify the limit from the Landau-de Gennes flow to a sharp interface model: in the isotropic region, $\QQ\equiv0$; in the nematic region,the $\QQ$-tensor is constrained on the manifolds $\mathcal{N}=\{s_+(\nn\otimes\nn-\frac13\II),\nn\in\BS\}$ with $s_+$ a positive constant, and the evolution of alignment vector field $\nn$ obeys the harmonic map heat flow; while the interface separating the isotropic and nematic regions evolves by the mean curvature flow. This problem can be viewed as a concrete but representative case of the Rubinstein-Sternberg-Keller problem. This is a joint work with Professor Wei Wang in ZJU, Professor Pingwen Zhang and Professor Zhifei Zhang in PKU.