报告题目一:How to write mathematics
报 告 人:Sanming Zhou 教授(墨尔本大学)
报告时间:2018年10月16日(周二)上午10:00-11:00
报告摘要:
Writing mathematics is an important part of research. This talk is a reflection of my personal experience and viewpoint on how to write mathematics articles.
报告题目二:Perfect codes in Cayley graphs (I),(II),(III)
报 告 人:Sanming Zhou 教授(墨尔本大学)
报告时间:10月17日(周三)19:00-20:30/Perfect codes in Cayley graphs (I)
10月18日(周四)19:00-20:30/Perfect codes in Cayley graphs (II)
10月19日(周五)8:00-9:30/Perfect codes in Cayley graphs (III).
报告摘要:
Let $G = (V, E)$ be a graph and $t$ a positive integer. A perfect $t$-code in $G$ is a subset $C$ of $V$ such that every vertex of $G$ is at distance no more than $t$ to exactly one vertex in $C$. Perfect $t$-codes in the Hamming graph $H(n, q)$ are precisely $q$-ary perfect $t$-codes of length $n$ in the classical setting, and those in the Cartesian product $C_q \Box \cdots \Box C_q$ of cycle $C_q$ with itself $n$ times are precisely $q$-ary perfect $t$-codes of length $n$ under the Lee metric. A perfect 1-code in a graph is also called an efficient dominating set or independent perfect dominating set of the graph.
Since both $H(n, q)$ and $C_q \Box \cdots \Box C_q$ are Cayley graphs, perfect codes in Cayley graphs can be considered as generalizations of perfect codes under the Hamming or Lee metric. Perfect 1-codes in Cayley graphs are also closely related to tilings of the underlying groups. In these talks I will discuss perfect codes in Cayley graphs, with an emphasis on perfect 1-codes.
报告地点:4号楼4318室
邀 请 人:周胜林 教授
欢迎广大师生前往!
数学学院
2018年10月12日
报告人简介:
Zhou Sanming,墨尔本大学数学与统计学院教授,Australasian J. Combinatorics主编。研究领域为:代数图论,组合优化,随机图过程,以及理论计算机及通讯领域中的若干网络优化问题。Zhou Sanming于2000年在西澳大学获博士学位,曾获得代数组合学界著名的Kirkman奖章(2003)、澳大利亚研究委员会博士后研究员(ARC Postdoctoral Research Fellow(2003-2004)、澳大利亚研究委员会未来研究员 (ARC Future Fellow)。其研究一直处于国际前沿,国际交流活跃,曾多次应邀来国内高校讲学和开展讨论班,并多次主持国际会议,主持澳大利亚研究委员会基金资助项目4项,发表SCI论文70余篇,先后指导了10余名硕、博士研究生。