报告一题目:Falconer's formula for the Hausdorff dimension of self-affine sets in p-adic fields
报 告 人:邱华 副教授(南京大学)
报告时间:2018年1月20日(星期六)上午10:00-11:00
邀 请 人:李兵 教授
报告二题目:Entropy dimension for zero entropy systems
报 告 人:窦斗 副教授(南京大学)
报告时间:2018年1月20日(星期六)上午11:00-12:00
邀 请 人:匡锐 副教授
报告三题目:Multifractal analysis of non-uniformly contracting iterated
报 告 人:叶远灵 教授(华南师范大学)
报告时间:2018年1月20日(星期六)下午15:00-16:00
邀 请 人:李兵 教授
报告四题目:平面紧集的Peano模型
报 告 人:罗俊 教授(中山大学)
报告时间:2018年1月20日(星期六)下午16:00-17:00
邀 请 人:李兵 教授
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2018年01月17日
报告一摘要:Extending a classical result of Falconer to p-adic setting, we prove that for almost all translations, the Hausdorff dimension of a p-adic self-affine set is determined by the singular value function of the associated linear transformations.The p-adic singular value composition and singular value function considered in this talk are different from those in Euclidean space.
报告二摘要:Entropy dimension is a class of entropy type quantities which measure the intermediate complexity for zero entropy systems. In this talk,I will introduce some related results and progresses on this theme.
报告三摘要:Let $X = [0, 1]$. Given a non-uniformly contracting conformal iterated function system (IFS) $\{ w_j \}_{j = 1}^m$ and a family of positive Dini continuous potential functions $\{ p_j\}_{j=1}^m$ on $X$, the triple system $(X, \{w_j\}_{j=1}^m,\{p_j\}_{j=1}^m)$, under some conditions, determines uniquely a probability invariant measure, denoted by $\mu$. In this paper, we study pressure function of the system and multifractal structure of $\mu$. We prove that the pressure function is differentiable and the multifractal formalism holds, if the IFS $\{ w_j \}_{j = 1}^m$ has non-overlapping.
报告四摘要:研究有理函数在其Julia集上的限制,得到了一个保留较多拓扑结构的因子系统,同时还能用于分析其它的平面紧集,例如Mandelbrot集的结构。