•  学术报告

关于举行美国加州大学欧文分校万大庆教授和四川大学洪绍方教授学术报告的通知

发布时间:2017-12-28文章来源:华南理工大学数学学院浏览次数:622


报告题目1:Class numbers and $p$-ranks in $/mathbb{Z}^d_p$-towers
报 告 人:万大庆  教授 (美国加州大学欧文分校)
报告时间:2017年12月29日 (星期五)下午13:30-14:30
报告题目2:Multiple reciprocal sums and multiple reciprocal star sums of polynomials are almost never integers
报 告 人: 洪绍方  教授 (四川大学)
报告时间:2017年12月29日 (星期五)下午15:00-16:00
邀 请 人:胡甦  副教授
报告地点:四号楼4318室

欢迎广大师生前往!

                                                                    数学学院
                                                                 2017年12月28日


报告1摘要:To extend Iwasawa's classical theorem from $/mathbb{Z}_p$-towers to $/mathbb{Z}^d_p$-towers, Greenberg conjectured that the exponent of $p$ in the $n$-th class number in a $/mathbb{Z}^d_p$-tower of a global field $K$ ramified at finitely many primes is given by a polynomial in $pn$ and $n$ of total degree at most d for sufficiently large $n$. This conjecture remains open for $d/ge 2$. In this talk, we prove that this conjecture is true in the function field case. Further, we propose a series of general conjectures on $p$-adic stability of zeta functions in a $p$-adic Lie tower of function fields.
报告2摘要: Let $n$ and $k$ be integers such that $1/le k/le n$ and $f(x)$ be a nonzero polynomial of integer coefficients. For any $n$-tuple $/vec{s}=(s_1, ..., s_n)$ of positive integers, we define $$H_{k,f}(/vec{s}, n):=/sum/limits_{1/leq i_{1}</cdots<i_{k}/le n}/prod/limits_{j=1}^{k}/frac{1}{f(i_{j})^{s_j}}$$and$$H_{k,f}^*(/vec{s}, n):=/sum/limits_{1/leq i_{1}/leq /cdots/leq i_{k}/leq n}/prod/limits_{j=1}^{k}/frac{1}{f(i_{j})^{s_j}}.$$If all $s_j$ are 1, then let $H_{k,f}(/vec{s}, n):=H_{k,f}(n)$ and $H_{k,f}^*(/vec{s}, n):=H_{k,f}^*(n)$. Hong and Wang refined the results of Erd/"{o}s and Niven, and of Chen and Tang by showing that $H_{k,f}(n)$ is not an integer if $n/geq 4$ and $f(x)=ax+b$ with $a$ and $b$ being positive integers. Meanwhile, Luo, Hong, Qian and Wang established the similar result when $f(x)$ is of nonnegative integer coefficients and of degree no less than two. For any $n$-tuple $/vec{s}=(s_1, ..., s_n)$ of positive integers, Pilehrood, Pilehrood and Tauraso proved that $H_{k,f}(/vec{s},n)$ and $H_{k,f}^*(/vec{s},n)$ are nearly never integers if $f(x)=x$. In this talk, we show that if $f(x)$ is a nonzero polynomial of nonnegative integer coefficients such that either $/deg f(x)/ge 2$ or $f(x)$ is linear and $s_j/ge 2$ for all integers $j$ with $1/le j/le n$, then $H_{k,f}(/vec{s}, n)$ and $H_{k,f}^*(/vec{s}, n)$ are not integers except for the case $f(x)=x^{m}$ with $m/geq1$ being an integer and $n=k=1$, in which case, both of $H_{k,f}(/vec{s}, n)$ and $H_{k,f}^*(/vec{s}, n)$ are integers. Furthermore, we prove that if $f(x)=2x-1$, then both $H_{k,f}(/vec{s}, n)$ and $H_{k,f}^*(/vec{s}, n)$ are not integers except when $n=1$, in which case $H_{k,f}(/vec{s}, n)$ and $H_{k,f}^*(/vec{s}, n)$ are integers. The method of the proofs is analytic and $p$-adic.

报告人简介:
    万大庆,美国加州大学尔湾分校(University of California, Irvine)教授。中科院数学院研究所海外杰出访问教授,清华大学高研中心海外访问教授,国家杰岀青年基金(B类) 获得者,教育部海外杰出青年,入选中科院百人计划,获得国际华人数学家晨兴(Morningside)数学银奖。已在数学顶尖杂志Annals of Mathematic、Inventiones Mathematicae、Journal of American Mathematical Society 等发表了多篇文章。现为国际著名数论杂志《Journal of Number Theory》、《Finite Fields and Their Applications》编委,在数论、算术几何、编码、密码和计算复杂性领域都有很高的研究成就。
    洪绍方,四川大学数学学院教授,博士生导师,研究领域为数论,算术几何和编码理论,入选教育部2006年度新世纪优秀人才计划,已发表学术论文90多篇,SCI收录论文60篇。