报告题目1:Optimal estimates for elliptic equations and systems from composite material
报 告 人:李海刚 博士(北京师范大学)
报告时间:2017年12月22(星期五)下午15:00—16:00
报告题目2:Recent Progress on Neumann Problems in Homogenization of Systems of Elasticity
报 告 人:宋亮 博士(中山大学)
报告时间:2017年12月22(星期五)下午16:00—17:00
报告题目3:Nonuniqueness of nematic liquid crystal flows in dimension three
报 告 人:龚华均 博士 (深圳大学)
报告时间:2017年12月22(星期五)下午17:00—18:00
邀 请 人:温焕尧 教授
报告地点:四号楼4318
欢迎广大师生前往!
数学学院
2017年12月20日
报告摘要1: We study a class of second order elliptic equations and systems of divergence form, with discontinuous coefficients, arising from the study of composite materials. For the original problem proposed by Ivo Babuska concerning the system of linear elasticity, we develop an iteration technique with respect to the energy integral to overcome the difficulty from the lack of maximal principle and obtain the optimal blow-up rates of the gradients when two inclusions are close to touch. Our results hold for convex inclusions with arbitrary shape and in all dimensions. For the scalar case, we further establish an explicit dependence of the derivatives on the ellipticity coefficients and the distance between interfacial boundaries of inclusions, which unifies the known results in the literature and answers two open problems proposed by Li-Vogelius (ARMA2000). This is based on a series of joint work with Professor Jiguang Bao (BNU), Hongjie Dong (Brown), and Yanyan Li (Rutgers).
报告摘要2: This talk concerns with a family of elliptic systems of linear elasticity with rapidly oscillating periodic coefficients, arising in the theory of homogenization.We establish uniform optimal regularity estimates for solutions of Neumann problems in a bounded Lipschitz domain with $L^2$ boundary data. The proof relies on a boundary Korn inequality for solutions of systems of linear elasticity, a large-scale Rellich estimate obtained by Shen and some techniques of harmonic analysis. This is a joint work with Jun Geng and Zhongwei Shen.
报告摘要3: For suitable initial and boundary data, we construct infinitely many weak solutions to the nematic liquid crystal flows in dimension three. These solutions are in the axisymmetric class with bounded energy and “backward bubbling” at a large time.
报告人简介:
李海刚,北京师范大学副教授、博士生导师,教育部霍英东青年教师基金获得者。河南师范大学本科(1999年--2003年),北京师范大学硕士、博士(2003年--2009年),其中2007年--2009为美国罗格斯(Rutgers)大学联合培养博士生。2009年博士毕业,并留校工作。主要研究来自材料学和几何学中的线性和非线性偏微分方程理论,已在《Adv. Math.》、《Arch. Ration. Mech. Anal.》、《Calc. Var. PDE》、《Trans. AMS》、《SIAM J. Math. Anal.》等主流数学杂志发表论文20余篇。
宋亮,现为中山大学数学学院副教授,2016年国家优秀青年科学基金获得者。研究领域为调和分析及其在偏微分方程中的应用等。已在《Adv. Math.》、《J. Functional Analysis》、《 Arch. Ration. Mech. Anal.》等主流数学杂志发表论文20余篇。
龚华均深圳大学数学与统计学院讲师。2012年博士毕业于复旦大学数学学院,指导教师刘宪高,2012-2014中国科学技术大学博士后,合作导师李嘉禹,主要研究双调和映射及液晶方程相关的问题,目前发表多篇研究论文。