•  学术报告

关于举行新加坡国立大学包维柱教授学术报告的通知

发布时间:2017-12-08文章来源:华南理工大学数学学院浏览次数:675

报告题目: Modeling and Simulation for Solid-State Dewetting Problems
报 告 人:包维柱 教授(新加坡国立大学)
报告时间:2017年12月14日 (星期四) 上午10:00-11:00
报告地点:四号楼4131室

欢迎广大师生前往!

                                                                      数学学院
                                                                  2017年12月08日

报告摘要:In this talk, I present sharp interface models with anisotropic surface energy and a phase field model for simulating solid-state dewetting and the morphological evolution of patterned islands on a substrate in two and three dimensions.We show how to derive the sharp interface model via thermovariation dynamics, i.e. variation of the interfacial energy via an open curve with two triple points moving along a fixed substrate.The sharp interface model tracks the moving interface explicitly and it is very easy to be handled in two dimensions via arc-length parametrization. The phase field model is governed by the Cahn-Hilliard equation with
 isotropic surface tension and variable scalar mobility and it easily deals with the complex boundary conditions and/or complicated geometry arising in the solid-state dewetting problem. Since the phase field model does not  explicitly track the moving surface, it naturally captures the topological changes that occur during film/island morphology evolution. Efficient and accurate numerical methods for both sharp interface models and phase field models are proposed. They are applied to study numerically different setups of solid-state dewetting including short and long island films,pinch-off, hole dynamics, semi-infinite film, etc. Our results agree with experimental results very well. This talk is based on joint works with Wei Jiang, David J. Srolovitz, Carl V. Thompson, Yan Wang and Quan Zhao.

报告人简介:包维柱教授1995年博士毕业于清华大学,曾任美国 Georgia Institute of Technology助理教授和新加坡国立大学副教授,36岁时被聘为新加坡国立大学教授,现为新加坡国立大学数学系provost讲席教授,担任过包括SIAM Journal on Scientific Computing等多个国际期刊杂志编委,2013年获冯康科学计算奖,2014年应邀在韩国举行的第26届国际数学家大会上作45分钟邀请报告。包维柱教授长期从事科学与工程计算研究,主要工作涉及偏微分方程数值方法及其在量子物理、流体和材料中的应用。特别是在Bose-Einstein 凝聚的数值方法及应用、高震荡色散类偏微分方程的多尺度算法和分析、无界区域上科学和工程问题的计算等方面取得了多个重要进展。