•  学术报告

关于举行香港城市大学杨彤教授和清华大学左怀青教授学术报告的通知

发布时间:2017-09-28文章来源:华南理工大学数学学院浏览次数:581

报告题目1:Well-posedness of  Prandtl equations in Gevrey function spaces
报 告 人:杨彤 教授 (香港城市大学)
报告时间:2017年10月09日 (星期一) 下午15:00-16:00
报告题目2:"Non-existence of Negative Weight Derivations of Isolated Singularities and a New Derivation Lie Algebra"
报 告 人:左怀青  教授 (清华大学)
报告时间:2017年10月09日 (星期一) 下午16:00-17:00
报告地点:四号楼4318室

 

欢迎广大师生前往!

                                                                      数学学院
                                                                  2017年09月28日
 

报告摘要1:After a brief review on the ill-posedness result about the Prandtl equations as perturbation of shear flow, we will present some well-posedness theories in Gevrey function spaces with index in (1,2] for both 2D and 3D problems. This is about the recent joint works with Wei-xi Li.
报告摘要2:Let R= C[x_1,x_2,..., x_n]/(f_1,...., f_m) be a positively graded Artinian algebra. A long-standing conjecture in algebraic geometry,commutative algebra and rational homotopy theory is the non-existence of negative weight derivations on R. Alexsandrov conjectured that there is no negative weight derivation when R is a complete intersection algebra and Yau conjectured there is no negative weight derivation on R when R is the moduli algebra of a weighted homogeneous hypersurface singularity. This problem is also important in differential geometry. On the other hand, Wahl conjectured that non-existence of negative weight derivations is still true for  positive dimensional positively graded R.  In this talk we will present our recent progress on these problems and introduce a new derivation Lie algebra of isolated singularity.