•  学术报告

关于举行纽约州立大学奥尔巴尼分校钟昌龙助理教授和中山大学李长征教授学术报告会的通知

发布时间:2017-06-13文章来源:华南理工大学数学学院浏览次数:363

报告题目1: Hecke-type algebras and equivariant cohomology of flag varieties
报 告 人:钟昌龙  助理教授(纽约州立大学奥尔巴尼分校 )
报告时间:2017年6月15日(星期四)下午15:00-16:00
报告题目2:On GGI's conjecture O
报 告 人:李长征 教授(中山大学)
报告时间:2017年6月15日(星期四)下午16:00-17:00
报告地点:四号楼4318室

欢迎广大师生前往!

                                                                      数学学院
                                                                   2017年06月13日

 

报告1摘要:
    The so-called Schubert calculus deals with (equivariant) cohomology of flag varieties. A systematic way of dealing with Schubert calculus by using Hecke-type algebras was started by Demazure and Bernstein-Gelfand-Gelfand, and later continued and generalized by Arabia, Kostant-Kumar, Lusztig, Bressler-Evens. In the last 10 years it was then generalized by myself with Calmes, Savage and Zainoulline. Our work studies general oriented cohomology theory of flag varieties, and can be applied to simplify and generalize classical results on singular cohomology and K-theory of flag varieties. In this talk I will explain the main idea in this series of work.
报告2摘要:
    In this talk, we will discuss the Conjecture O of Galkin, Golyshev and Iritani, which‘underlies’ Gamma conjectures I and II of them. Conjecture O is concerned with the eigenvalues of the operator on the small quantum cohomology of a Fano manifold X given by the quantum multiplication of the first Chern class of X. We will prove the conjecture for homogeneous varieties G/P and odd symplectic Grassmannians. This is my joint works with Daewoong Cheong. Leonardo Mihalcea, and Ryan Shifler.