•  学术报告

关于举行美国普渡大学王长友教授学术报告的通知

发布时间:2017-05-18文章来源:华南理工大学数学学院浏览次数:59

报告题目:A minimizing problem involving nematic liquid crystal droplets
报 告 人:王长友  教授   (美国普渡大学)
报告时间:2017年05月18日(星期四)上午10:30-11:30
报告地点:4号楼4318室

欢迎广大师生前往!

                                                                      数学学院
                                                                   2017年05月18日

报告摘要:
    In this talk, we will describe an energy minimizing problem arising from seeking the optimal configurations of a class of nematic liquid crystal droplets.More precisely, the general problem seeks a pair $(/Omega, u)$ that minimizes the energy functional: $$E(u,/Omega)= /int_/Omega /frac12|/nabla u|^2+ /mu /int_{/partial/Omega} f(x,u(x)) d/sigma,$$ among all open set $/Omega$ within the unit ball of $/mathbb R^3$ , with a fixed volume, and $u/in H^1(/Omega,/mathbb S^2)$. Here $f:/mathbb R^3/times /mathbb R /to/mathbb R$ is a suitable nonnegative function, which is given.
    While the existence of minimizers remains open in the full generality, there has been some partial progress when $/Omega$ is assumed to be convex.
    In this talk, I will discuss some results for $/Omega$ that are not necessarily convex. This is a joint work with my student Qinfeng Li.

报告人简介:
    王长友教授是偏微分方程领域的知名专家,于1996年在Rice大学获得博士学位。研究方向包括PDE,几何分析等,主持多项美国自然科学基金,获得荣誉包括: Sloan奖,美国数学会Centennial Fellowship,IMA New Directions奖,Simons Fellowship等。