报告题目:A minimizing problem involving nematic liquid crystal droplets
报 告 人:王长友 教授 (美国普渡大学)
报告时间:2017年05月18日(星期四)上午10:30-11:30
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2017年05月18日
报告摘要:
In this talk, we will describe an energy minimizing problem arising from seeking the optimal configurations of a class of nematic liquid crystal droplets.More precisely, the general problem seeks a pair $(/Omega, u)$ that minimizes the energy functional: $$E(u,/Omega)= /int_/Omega /frac12|/nabla u|^2+ /mu /int_{/partial/Omega} f(x,u(x)) d/sigma,$$ among all open set $/Omega$ within the unit ball of $/mathbb R^3$ , with a fixed volume, and $u/in H^1(/Omega,/mathbb S^2)$. Here $f:/mathbb R^3/times /mathbb R /to/mathbb R$ is a suitable nonnegative function, which is given.
While the existence of minimizers remains open in the full generality, there has been some partial progress when $/Omega$ is assumed to be convex.
In this talk, I will discuss some results for $/Omega$ that are not necessarily convex. This is a joint work with my student Qinfeng Li.
报告人简介:
王长友教授是偏微分方程领域的知名专家,于1996年在Rice大学获得博士学位。研究方向包括PDE,几何分析等,主持多项美国自然科学基金,获得荣誉包括: Sloan奖,美国数学会Centennial Fellowship,IMA New Directions奖,Simons Fellowship等。