报告题目1:On thin carpets for doubling measures
报 告 人:文胜友 教授 (湖北大学)
报告时间:2017年04月22日(星期六)下午14:30-15:30
报告题目2:On the regularity of $/{/lfloor/log_b(/alpha n+/beta)/rfloor/}_{n/geq0}$
报 告 人: 郭迎军 博士 (华中农业大学)
报告时间:2017年04月22日(星期六)下午15:30-16:30
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2017年04月18日
报告1摘要:
We study subsets of $/R^{d}$ which are thin for doubling measures or isotropic doubling measures. We show that any subset of $/R^{d}$ with Hausdorff dimension less than or equal to $d-1$ is thin for isotropic doubling measures. We also prove that a self-affine set that satisfies $OSCH$ (open set condition with holes) is thin for isotropic doubling measures. For doubling measures, we prove that Bara/'nski carpets are thin for doubling measures.
报告2摘要:
Let $/alpha,/beta$ be real numbers and $b/geq2$ be an integer. Allouche and Shallit showed that the sequence $/{/lfloor/alpha n+/beta/rfloor/}_{n/geq0}$ is $b$-regular if and only if $/alpha$ is rational. In this paper, using a base-independent regular language, we prove a similar result that the sequence $/{/lfloor/log_b(/alpha n+/beta)/rfloor/}_{n/geq0}$ is $b$-regular if and only if $/alpha$ is rational, where $/alpha>0$. In particular, when $/alpha=/sqrt{2},/beta=0$ and $b=2$, we answer the question of Allouche and Shallit that the sequence $/{/lfloor/frac{1}{2} + /log_2n/rfloor/}_{n/geq 1}$ is not $2$-regular, which has been proved by Bell, Moshe and Rowland respectively.