报告题目1:Amixed initial-boundary value problem for a class of anisotropicdegenerate parabolic-hyperbolic equations
报告人:李亚纯教授(上海交通大学)
报告时间:2017年2月26日上午9:00-10:00
报告题目2:Globalwell-posedness of the Boltzmann equation
报告人:段仁军教授(香港中文大学)
报告时间:2017年2月26日上午10:00-11:00
报告题目3:Onthe dual gradient chemotaxis system: attraction and repulsion
报告人:王治安教授(香港理工大学)
报告时间:2017年2月26日上午11:00-12:00
报告地点:4号楼4224室。
欢迎广大师生参加。
附:
报告1摘要: Weconsider an initial-boundary value problem with mixed type boundaryconditions for a class of degenerate parabolic-hyperbolic equations.Namely, we consider a Cartesian product domain and split its boundaryinto two parts. In one of them we impose a Dirichlet boundarycondition; in the other, we impose a Neumann condition. Weapply a normal trace formula for $L^2$-divergence-measure fields to prove a new strong trace property in the part of the boundarywhere the Neumann condition is imposed. We establish existence anduniqueness of the entropy solution.
报告2摘要:Wegive two results on global well-posedness of the Cauchy problem onthe Boltz- mann equation. The first one is concerned with strongsolutions in spatially critical Besov space in L2 framework for smallinitial data around global Maxwellians, and the second one is relatedto mild solutions in L∞framework for initial data allowed to have large amplitude andcontain vacuum.
报告3摘要:Inthis talk, we shall present a dual competing gradient chemotaxissystem modeling the aggregation of Microglia in Alzhemer’sdisease, and show various interesting behaviors resulting from theinteraction of attraction and repulsion in the system, includingglobal existence, blowup, and critical mass phenomenon and patternformations. Numerical simulation of various pattern formationswill be shown and open questions will be discussed.