报告题目:Someremarks on hypergeometric Bernoulli numbers
报告人:小松尚夫 教授(武汉大学)
报告时间:2017年01月12日(星期四)上午11:00-12:00
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2017年01月10日
报告摘要:For apositive integer $N$, hypergeometric Bernoulli numbers $B_{N,n}$ aredefined by using the confluent hypergeometric function. When $N=1$,$B_n=B_{1,n}$ are the classical Bernoulli numbers with $B_1=-1/2$. In1875, Glaisher gave several interesting determinant expressions ofnumbers, including Bernoulli numbers. One of the advantages ofhypergeometric Bernoulli numbers is the natural extension ofdeterminant expressions of the numbers, though many kinds ofgeneralizations of the Bernoulli numbers have been considered by manyauthors. In addition, there are some relations between thehypergeometric Bernoulli numbers and the classical Bernoulli numbers. In this talk, we show some interesting expressions ofhypergeometric Bernoulli numbers.
报告人简介:TakaoKomatsu (小松尚夫)毕业于澳大利亚Macquarie大学,师从著名数论学家A. J.Van der Poorten 教授,在《Math.Comp. (AMS)》,《Math.Proc. Cambridge Philos. Soc. 》,《Bull.Soc. Math. France》,《Japan.J. Math. 》,《Journalof Number Theory》, 《ActaArithmetica》, 《ActaMath. Hungar.》,《Indag. Math.》,《Monatsh.Math.》等一系列国际知名学术期刊发表了接近140篇文章,大多数被SCI检索。他在连分数,丢番图逼近以及数论中的特殊函数方面做出了一系列重要的成绩,受到国际同行广泛认可。他从2014年以来超过五十次受邀为国际期刊审稿。