•  学术报告

关于举行武汉大学小松尚夫教授学术报告会的通知

发布时间:2017-04-12文章来源:浏览次数:82

目:Someremarks on hypergeometric Bernoulli numbers

人:小松尚夫 教授(武大学)

时间20170112日(星期四)上午11:00-12:00

告地点:4号楼4318

 

迎广大生前往!

 

                                                                   数学学院

                                                                20170110

 

告摘要:For apositive integer $N$, hypergeometric Bernoulli numbers $B_{N,n}$ aredefined by using the confluent hypergeometric function. When $N=1$,$B_n=B_{1,n}$ are the classical Bernoulli numbers with $B_1=-1/2$. In1875, Glaisher gave several interesting determinant expressions ofnumbers, including Bernoulli numbers.  One of the advantages ofhypergeometric Bernoulli numbers is the natural extension ofdeterminant expressions of the numbers, though  many kinds ofgeneralizations of the Bernoulli numbers have been considered by manyauthors. In addition, there are some relations between thehypergeometric Bernoulli numbers and the classical Bernoulli numbers. In this talk, we show some interesting expressions ofhypergeometric Bernoulli numbers.

 

告人介:TakaoKomatsu (小松尚夫)毕业于澳大利Macquarie大学,从著名数学家A. J.Van der Poorten 教授,在Math.Comp. (AMS)》,《Math.Proc. Cambridge Philos. Soc. 》,《Bull.Soc. Math. France》,《Japan.J. Math. 》,《Journalof Number Theory》, ActaArithmetica》, ActaMath. Hungar.,Indag. Math.,Monatsh.Math.等一系列国知名学期刊表了接近140篇文章,大多数被SCI索。他在分数,逼近以及数中的特殊函数方面做出了一系列重要的成,受到国同行广泛可。他从2014年以来超五十次受邀期刊稿。