报告题目:Multiplicativedependence and independence of the translations of algebraicnumbers
报告人:沙敏 博士(澳大利亚新南威尔士大学)
报告时间:2016年10月20(星期四)上午9:00-10:00
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2016年10月17日
报告摘要:Wesay that non-zero complex numbers a_1,...,a_n are multiplicativelydependent if there exist integers k_1,...,k_n, not all zero, suchthat a_1^{k_1} ···a_n^{k_n} = 1. In this talk, we first presentthat given pairwise distinct algebraic numbers a_1, . . . , a_n, thenumbers a_1 + t, . . . , a_n + t are multiplicatively independent forall sufficiently large integers t. Then, for a pair (a,b) of distinctintegers, we will say something about how many pairs (a + t, b + t)are multiplicatively dependent when t runs through the integers. Thisis joint work with Arturas Dubickas.