报告题目1:Semi-conformalvectors of affine vertex operator algebras
报告人:楚彦军博士(河南大学)
报告时间:2016年6月29日(星期三)下午02:30-03:30
报告题目2:Tosrionpairs and slicings on abelian categories
报告人:韩喆博士(河南大学)
报告时间:2016年6月29日(星期三)下午03:30-04:30
报告题目3:DualLie Bialgebra Structures of Block Type
报告人:程永胜博士(河南大学)
报告时间:2016年6月29日(星期三)下午04:30-05:30
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2016年06月27日
报告1摘要:
In this talk, we shall study semi-conformal vectors of a vertexoperator algebra. For a vertex operator algebra $(V,\omega)$, we consider the set $Sc(V,\omega)$ of all semi-conformalvectors of V, it is an affine algebraic variety.Using itsgeometry, we shall understand the vertex operator algebra $V$.For an affine vertex operator algebra $V$, we described thestructure of $Sc(V,\omega)$ by some matrix equations. Onthe other hand, we consider the action on $V$ of the automorphismgroup $G$. Naturally, $G$ has an action on $Sc(V,\omega)$, weexpect to describe $G$-orbits of $Sc(V,\omega)$ for affine vertexoperator algebras. As an example, we study the case for affine vertexoperator algebras associated to $sl_2$. In this case, wedescribed $G-$ orbit structure of $Sc(V,\omega)$.
报告2摘要:
A torsion pair is a pair of subcategories of an abelian categorywhich satisfies some conditions. Slicing of triangulated categories are one of the ingredients of Bridgeland’s stability conditions.Slicings of triangulated categories correspondence slicings on someabelian categories. On the other hand, slicings on abelian categoriesare refinements of torsion pairs. We reformulate the definition ofslicing by a family of decreasing torsion pairs.
报告3摘要:
Let B be the Lie algebra of Block type with the basis {L_{α,i} | α,i∈Z, i >−1} and Lie bracket [L_{α,i}, L_{β,j}] = ((i + 1)β −(j+ 1)α)L_{α+β,i+j}. In this paper, an explicit description of thestructures of dual Lie bialgebras of the Block type is given. At thesame time, we obtain four classes of new infinite dimensional Liealgebras.