•  学术报告

关于举行河南大学楚彦军博士、韩喆博士、程永胜博士学术报告会的通知

发布时间:2017-04-12文章来源:浏览次数:595

1Semi-conformalvectors of  affine vertex operator algebras
人:楚彦博士(河南大学)
时间2016629(星期三)下午02:30-03:30
2Tosrionpairs and slicings on abelian categories
人:博士(河南大学)
时间2016629(星期三)下午03:30-04:30
3DualLie Bialgebra Structures of Block Type
人:程永博士(河南大学)
时间2016629(星期三)下午04:30-05:30
告地点:4号楼4318

迎广大生前往!

                                                                     数学学院
                                                                  20160627
1摘要:
   In this talk, we shall study semi-conformal vectors of a vertexoperator algebra.  For a vertex operator algebra $(V,\omega)$, we consider the set  $Sc(V,\omega)$ of all semi-conformalvectors of V,  it is an affine algebraic variety.Using itsgeometry, we shall  understand the vertex operator algebra $V$.For an affine vertex operator algebra $V$, we described thestructure  of $Sc(V,\omega)$ by some matrix equations.  Onthe other hand, we consider the action on $V$ of the automorphismgroup $G$. Naturally, $G$  has an action on $Sc(V,\omega)$, weexpect to describe $G$-orbits of $Sc(V,\omega)$ for affine vertexoperator algebras. As an example, we study the case for affine vertexoperator algebras associated to $sl_2$.  In this case, wedescribed $G-$ orbit structure of $Sc(V,\omega)$.

2摘要:
   A torsion pair is a pair of subcategories of an abelian categorywhich satisfies some conditions. Slicing of triangulated categories are one of the ingredients of Bridgeland’s stability conditions.Slicings of triangulated categories correspondence slicings on someabelian categories. On the other hand, slicings on abelian categoriesare refinements of torsion pairs. We reformulate the definition ofslicing by a family of decreasing torsion pairs.

3摘要:
   Let B be the Lie algebra of Block type with the basis {L_{α,i} | α,iZ, i >−1} and Lie bracket [L_{α,i}, L_{β,j}] = ((i + 1)β −(j+ 1)α)L_{α+β,i+j}. In this paper, an explicit description of thestructures of dual Lie bialgebras of the Block type is given. At thesame time, we obtain four classes of new infinite dimensional Liealgebras.