报告题目1:L2estimates on p-comvex Riemannian manifolds.
报告人:嵇庆春教授(复旦大学)
报告时间:1月27日(周三)上午9:00-9:45
报告地点:4号楼4135室
报告摘要:wewill talk about L2 estimates on p-comvex Riemannian manifolds. Asgeometric applications, we derive topological restrictions ofp-convexity by using L2 method without any assumptions on sectionalcurvature.
报告题目2:Recentprogress on the second main Theorem.
报告人:于光升博士(复旦大学)
报告时间:1月27日(周三)上午10:00-10:45
报告地点:4号楼4135室
报告摘要:Wewill start from Cartan's second main Theorem which is the core ofNevanlinna theory and talk about and its recent progress forhypersurfaces.
报告题目3:Onthe $p$-pseudoharmonic map heat flow
报告人:韩英波副教授(信阳师范学院)
报告时间:1月27日(周三)下午15:00-16:45
报告地点:4号楼4135室
报告摘要:Inthis paper, we consider the heat flow for $p$-pseudoharmonic mapsfrom a closed Sasakian manifold $(M^{2n+1},J,\theta)$ into a compactRiemannian manifold $(N^{m},g)$. We prove global existence andasymptotic convergence of the solution for the $p$-pseudoharmonic mapheat flow, provided that the sectional curvature of the targetmanifold $N$ is nonpositive. Moreover, without the curvatureassumption on the target manifold, \ we obtain global existence andasymptotic convergence of pseudoharmonic map heat flow as well whenthe its initial $p$-energy is sufficiently small.
报告题目4:Parabolicvector bundle and related analytic problems
报告人:张玮副教授(华南理工大学)
报告时间:1月27日(周三)下午17:00-17:45
报告地点:4号楼4135室
报告摘要: Parabolicvector bundle raised from the study of modular curves in algebraicgeometry. The Parabolic structure at the puncture corresponds to agrowth condition of a noncompact manifold at the infinite. To studythem, we borrow the so called concept weighted Sobolev spaceform analysis, and try to solve the heat equation on a noncompactmanifold under weighted Sobolev space.
欢迎广大师生参加!
数学学院
2016年01月25日