•  学术报告

关于举行几何物理学术研讨会的通知

发布时间:2017-04-12文章来源:浏览次数:74

几何物理学会将于2016119日上午9:00—121日在4号楼4318行,具体告内容安排如下:

 

 

1Hom-Lie-Yamagutialgebras
 人:涛教授(河南范大学)
时间2016119日(周二)上午1000-1130
告摘要:Wewill give an introduction to Lie-Yamaguti algebras andHom-Lie-Yamaguti algebras. The representation and cohomology theoryof Hom-Lie-Yamaguti algebras are developed. As an application, wewill verify that this cohomology theory can be used to characterizedeformations and extensions of Hom-Lie-Yamaguti algebras.

 

 

2Atiyahclass and L_infinity algebras
 人:郎蕾博士(北京大学)
时间2016119日(周二)下午1500-1730
告摘要:Toa Lie algebroid pair (L,A), I will define its Atiyah class and present its geometric meaning by explaining several examples. Then Iwill talk about the
L_infinity[1]-algebra structure on\Gamma(\wedge A^\star \tensor L/A) associated to a Lie algebroidpair, whoes binary bracket is given by the Atiyah cocycle.

 

 

3Fromr-spin intersection numbers to Hodge integrals
 人:丁祥茂研究(中国科学院数学研究院)
时间2016120日(周三)上午0900-1000
告摘要:GeneralizedKontsevich Matrix Model (GKMM) with a certain given potential is thepartition function of r-spin intersection numbers. We represent thisGKMM in terms of fermions and expand it in terms of the Schurpolynomials by boson-fermion correspon- dence, and link it with aHurwitz partition function and a Hodge partition by operators in a GL(∞) group. Then, from a W1+∞ constraint of the partitionfunction of r-spin inter- section numbers, we get a W1+∞ constraintfor the Hodge partition function. The W1+∞ constraint completelydetermines the Schur polynomials expansion of the Hodge partitionfunction.

 

 

4QP-structuresof degree 3 and  LWX 2-algebroids
 人:生云教授(吉林大学)
时间2016120日(周三)上午1030-1130
告摘要:Inthis paper, we give the notion of a Courant 2-algebroid and show thata  QP-structure of degree 3 actually gives rise to a Courant2-algebroid. This generalizes the result that a  QP-structure ofdegree 2 gives rise to a Courant  algebroid. We show that onecan obtain a Lie 3-algebra from a Courant 2-algebroid. Furthermore,Courant 2-algebroids are constructed from Lie 2-algebroids and Lie 2-bialgebroids.

 

 

5:高Courant代数胚和Dirac
 人:毕艳会博士(南昌航空大学)
时间2016120日(周三)下午1630-1730
告摘要:要描述高Courant代数胚的基本概念和性,并定Dirac构。介Nambu-Piosson构、多辛构与高阶结构的关系。

 

 

6SymplecticLie algebroids and Manin triples for left-symmetric algebroids
 人:刘杰博士(吉林大学)
时间2016121日(周四)上午0900-1130
告摘要:Weintroduce the notion of an LWX-algebroid, which is a geometricgeneralized of a quadratic left-symmetric algebra.  Moreimportantly, there is a one-to-one correspondence between symplecticLie algebroids and LWX-algebroids.  Furthermore, we introducethe notion of a left-symmetric bialgebroid, which is a geometricgeneralized of left-symmetric bialgebra.  On the double of aleft-symmetric bialgebroid, there is an LWX-algebroid structurenaturally.  At last, we give a equivalent description ofPara-Kahler Lie algebroids in term of  Para-complex LWX-algebroids.


告地点:4号楼4318

迎广大生前往!

                                       数学学院
                                   20160115