几何物理学术研讨会将于2016年1月19日上午9:00—1月21日在4号楼4318室举行,具体报告内容安排如下:
报告题目1:Hom-Lie-Yamagutialgebras
报 告人:张涛教授(河南师范大学)
报告时间:2016年1月19日(周二)上午10:00-11:30
报告摘要:Wewill give an introduction to Lie-Yamaguti algebras andHom-Lie-Yamaguti algebras. The representation and cohomology theoryof Hom-Lie-Yamaguti algebras are developed. As an application, wewill verify that this cohomology theory can be used to characterizedeformations and extensions of Hom-Lie-Yamaguti algebras.
报告题目2:Atiyahclass and L_infinity algebras
报 告人:郎红蕾博士(北京大学)
报告时间:2016年1月19日(周二)下午15:00-17:30
报告摘要:Toa Lie algebroid pair (L,A), I will define its Atiyah class and present its geometric meaning by explaining several examples. Then Iwill talk about the
L_infinity[1]-algebra structure on\Gamma(\wedge A^\star \tensor L/A) associated to a Lie algebroidpair, whoes binary bracket is given by the Atiyah cocycle.
报告题目3:Fromr-spin intersection numbers to Hodge integrals
报 告人:丁祥茂研究员(中国科学院数学研究院)
报告时间:2016年1月20日(周三)上午09:00-10:00
报告摘要:GeneralizedKontsevich Matrix Model (GKMM) with a certain given potential is thepartition function of r-spin intersection numbers. We represent thisGKMM in terms of fermions and expand it in terms of the Schurpolynomials by boson-fermion correspon- dence, and link it with aHurwitz partition function and a Hodge partition by operators in a GL(∞) group. Then, from a W1+∞ constraint of the partitionfunction of r-spin inter- section numbers, we get a W1+∞ constraintfor the Hodge partition function. The W1+∞ constraint completelydetermines the Schur polynomials expansion of the Hodge partitionfunction.
报告题目4:QP-structuresof degree 3 and LWX 2-algebroids
报 告人:生云鹤教授(吉林大学)
报告时间:2016年1月20日(周三)上午10:30-11:30
报告摘要:Inthis paper, we give the notion of a Courant 2-algebroid and show thata QP-structure of degree 3 actually gives rise to a Courant2-algebroid. This generalizes the result that a QP-structure ofdegree 2 gives rise to a Courant algebroid. We show that onecan obtain a Lie 3-algebra from a Courant 2-algebroid. Furthermore,Courant 2-algebroids are constructed from Lie 2-algebroids and Lie 2-bialgebroids.
报告题目5:高阶Courant代数胚和Dirac结构
报 告人:毕艳会博士(南昌航空大学)
报告时间:2016年1月20日(周三)下午16:30-17:30
报告摘要:简要描述高阶Courant代数胚的基本概念和性质,并定义高阶Dirac结构。介绍Nambu-Piosson结构、多辛结构与高阶结构的关系。
报告题目6:SymplecticLie algebroids and Manin triples for left-symmetric algebroids
报 告人:刘杰锋博士(吉林大学)
报告时间:2016年1月21日(周四)上午09:00-11:30
报告摘要:Weintroduce the notion of an LWX-algebroid, which is a geometricgeneralized of a quadratic left-symmetric algebra. Moreimportantly, there is a one-to-one correspondence between symplecticLie algebroids and LWX-algebroids. Furthermore, we introducethe notion of a left-symmetric bialgebroid, which is a geometricgeneralized of left-symmetric bialgebra. On the double of aleft-symmetric bialgebroid, there is an LWX-algebroid structurenaturally. At last, we give a equivalent description ofPara-Kahler Lie algebroids in term of Para-complex LWX-algebroids.
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2016年01月15日