报告题目:Uniformregularity and vanishing dissipation limit for the full
compressible Navier Stokessystem in 3-D bounded domain
报告人:王勇博士(中国科学院)
报告时间:2015年10月30日(周五)上午10:00-11:00
报告地点:四号楼4318室
欢迎广大师生前往!
数学学院
2015年10月26日
报告摘要:
In the presentpaper, we study the uniform regularity and vanishing dissipationlimit for the full compressible Navier-Stokes system whose viscosityand heat conductivity are allowed to vanish at different order. Theproblem is studied in a 3-D bounded domain with Navier-slip typeboundary conditions. It is shown that there exists a unique strongsolution to the full compressible Navier-Stokes system with theboundary conditions in a finite time interval which isindependent of the viscosity and heat conductivity. The solution isuniform bounded in $W^{1,\infty}$ and a conormal Sobolev space. Basedon such uniform estimates, we prove the convergence of the solutionsof the full compressible Navier-Stokes to the corresponding solutionsof the full compressible Euler system in$L^\infty(0,T;L^2)$,$L^\infty(0,T;H^1)$ and$L^\infty([0,T]\times\Omega)$ with a rate of convergence.