•  学术报告

关于举行沙敏博士学术报告的通知

发布时间:2017-04-12文章来源:浏览次数:92

关于举行沙敏博士学术报告的通知

报告题目:Someproperties of integer polynomials and their applications in linearrecurrence sequences

人:沙敏博士(澳大利亚的新南威尔士大学数学系

报告时间:201536日下午3:00--4:00

报告地点:4号楼4318

欢迎广大师生参加。              

             数学学院

                                   2015227

附:

报告人简介:沙敏博士20077月毕业于华南理工大学(数学与应用数学专业),当年保送到清华大学攻读基础数学硕士学位并于20107月毕业(获得学校优秀研究生称号),随后公派到法国的波尔多大学攻读基础数学博士学位并于20139月毕业。目前在澳大利亚的新南威尔士大学数学系做博士后。研究兴趣主要是经典数论、丢番图几何、算术动力系统、椭圆曲线的算术及其应用、以及函数域上的线性递归序列。在Journalof Combinatorial Theory Series BInternationalMathematics Research NoticesExperimentalMathematicsProceedingsof the American Mathematical SocietyMonatsheftefur Mathematik等国外数学刊物上发表论文14篇,在审论文6篇。从2012年开始担任美国《数学评论》评论员,是SIAMJournal on Discrete MathematicsFiniteFields and Their Applications等多个数学杂志的审稿人。

 

报告摘要: Areal polynomial is called degenerate if it has two distinct rootswhose quotient is a root of unity, and it is called dominant if ithas exactly one root with largest modulus among all its roots. Wefirst show that almost all integer polynomials are non-degenerate,and almost all monic integer polynomials are dominant. It is alsoproved that almost all integer polynomials have exactly one root ortwo roots with largest modulus. The applications of these resultssuggest that almost every randomly generated linear recurrencesequence (LRS) is exactly what we usually prefer it to be, and theSkolem problem of LRS is done for almost all LRS of algebraic numberswith integer coefficients (or rational coefficients). Note that theSkolem problem is widely open in general case.