报告题目:
1.Analogues of symmetric functions in representation theory. I-III
2. Constructionof Segal-Sugawara vectors for simple Lie algebras.IV-V
报告人:Rozhkovskaya教授(美国堪萨斯州立大学)
报告时间:2014年11月30日上午8:30--12:30;下午2:30--5:30
2014年12月1日上午8:30--12:30,下午2:30--5:30
2014年12月2日上午8:30--12:30.
报告地点:4号楼4318
欢迎广大师生参加。
数学学院
2014年11月19日
附:
报告1摘要:Symmetricfunctions (polynomial functions that are invariant with respectto symmetric group) is one of the main tools in study of classical representation theory. They serve as characters ofirreducible modules and allow to answer many natural questions (computation of dimensions of modules, decompositionof tensor products etc.). Moving further toother questions of representation theory naturally produces analogues (in various meanings) of symmetric functions. We willreview some examples of these analogues with the emphasis, what properties of symmetric functions areinherited in those analogues.
报告2摘要:Atthe critical level the center of associated to avacuum module
affine vertex algebra of a simple Lie algebra is acommutative sublagebra described by B. Feigin andE.Frenkel. Recently simple explicit formulas for generators of this subalgebra for classical Lie algebras (Segal-Sugawara vectors) were found by A. I. Molev. We will reviewthis construction from the point of view of invariants of classicalLie algebras and describe how this approach is used in our ongoing project for construction of Segal-Sugawara vectors forexceptional types of Lie algebras.