•  学术报告

关于举行偏微分方程系列学术报告的通知

发布时间:2017-02-25文章来源:华南理工大学数学学院浏览次数:42

 

报告题目1A mixed initial-boundary value problem for a class of anisotropic degenerate parabolic-hyperbolic equations

报告人:李亚纯 教授(上海交通大学)

报告时间: 2017年2月26日上午9:00-10:00

 

报告题目2Global well-posedness of the Boltzmann equation

报告人: 段仁军 教授(香港中文大学)

报告时间:2017年2月26日上午10:00-11:00

 

报告题目3 On the dual gradient chemotaxis system: attraction and repulsion

报告人:王治安 教授(香港理工大学)

报告时间:2017年2月26日上午11:00-12:00

 

报告地点:4号楼4224室。

 

欢迎广大师生参加。

 

附:

报告1摘要: We consider an initial-boundary value problem with mixed type boundary conditions for a class of degenerate parabolic-hyperbolic equations. Namely, we consider a Cartesian product domain and split its boundary into two parts. In one of them we impose a Dirichlet boundary condition; in the other, we impose a Neumann condition.  We apply a normal trace formula for $L^2$-divergence-measure fields to  prove a new strong trace property in the part of the boundary where the Neumann condition is imposed. We establish existence and uniqueness of the entropy solution.

 

报告2摘要:We give two results on global well-posedness of the Cauchy problem on the Boltz- mann equation. The first one is concerned with strong solutions in spatially critical Besov space in L2 framework for small initial data around global Maxwellians, and the second one is related to mild solutions in L framework for initial data allowed to have large amplitude and contain vacuum.

 

报告3摘要: In this talk, we shall present a dual competing gradient chemotaxis system modeling the aggregation of Microglia in Alzhemers disease, and show various interesting behaviors resulting from the interaction of attraction and repulsion in the system, including global existence, blowup, and critical mass phenomenon and pattern formations.  Numerical simulation of various pattern formations will be shown and open questions will be discussed.