报告题目:Multiplicative dependence and independence of the translations of algebraic numbers
报 告 人:沙敏 博士(澳大利亚新南威尔士大学)
报告时间:2016年10月20(星期四)上午9:00-10:00
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2016年10月17日
报告摘要: We say that non-zero complex numbers a_1,...,a_n are multiplicatively dependent if there exist integers k_1,...,k_n, not all zero, such that a_1^{k_1} ···a_n^{k_n} = 1. In this talk, we first present that given pairwise distinct algebraic numbers a_1, . . . , a_n, the numbers a_1 + t, . . . , a_n + t are multiplicatively independent for all sufficiently large integers t. Then, for a pair (a,b) of distinct integers, we will say something about how many pairs (a + t, b + t) are multiplicatively dependent when t runs through the integers. This is joint work with Arturas Dubickas.