•  学术报告

关于举行河南大学楚彦军博士、韩喆博士、程永胜博士学术报告会的通知

发布时间:2016-06-27文章来源:华南理工大学数学学院浏览次数:291

报告题目1:Semi-conformal vectors of  affine vertex operator algebras
报 告 人:楚彦军 博士 (河南大学)
报告时间:2016年6月29日(星期三) 下午02:30-03:30
报告题目2:Tosrion pairs and slicings on abelian categories
报 告 人:韩喆 博士 (河南大学)
报告时间:2016年6月29日(星期三) 下午03:30-04:30
报告题目3:Dual Lie Bialgebra Structures of Block Type
报 告 人:程永胜 博士 (河南大学)
报告时间:2016年6月29日(星期三) 下午04:30-05:30
报告地点:4号楼4318室

欢迎广大师生前往!

                                                                      数学学院
                                                                   2016年06月27日
报告1摘要:
    In this talk, we shall study semi-conformal vectors of a vertex operator algebra.  For a vertex operator algebra $(V,/omega)$,  we consider the set  $Sc(V,/omega)$ of all semi-conformal vectors of V,  it is an affine algebraic variety.Using its geometry, we shall  understand the vertex operator algebra $V$. For an affine vertex operator algebra $V$, we described the structure  of $Sc(V,/omega)$ by some matrix equations.  On the other hand, we consider the action on $V$ of the automorphism group $G$. Naturally, $G$  has an action on $Sc(V,/omega)$, we expect to describe $G$-orbits of $Sc(V,/omega)$ for affine vertex operator algebras. As an example, we study the case for affine vertex operator algebras associated to $sl_2$.  In this case, we described $G-$ orbit structure of $Sc(V,/omega)$.

报告2摘要:
    A torsion pair is a pair of subcategories of an abelian category which satisfies some conditions. Slicing of triangulated categories  are one of the ingredients of Bridgeland’s stability conditions. Slicings of triangulated categories correspondence slicings on some abelian categories. On the other hand, slicings on abelian categories are refinements of torsion pairs. We reformulate the definition of slicing by a family of decreasing torsion pairs.

报告3摘要:
    Let B be the Lie algebra of Block type with the basis {L_{α,i} | α,i ∈ Z, i >−1} and Lie bracket [L_{α,i}, L_{β,j}] = ((i + 1)β −(j + 1)α)L_{α+β,i+j}. In this paper, an explicit description of the structures of dual Lie bialgebras of the Block type is given. At the same time, we obtain four classes of new infinite dimensional Lie algebras.