报告题目1:Structure of Helicity and Global Solutions of Incompressible Navier-Stokes
Equation
报 告 人:周忆 教授(复旦大学)
报告时间:2016年4月20日(周三)上午 9:30-10:30
报告题目2:2维Muskat自由边值问题解的整体存在性
报 告 人:雷震 教授(复旦大学)
报告时间:2016年4月20日(周三)上午10:30-11:30
报告地点:4号楼4318室
欢迎广大师生前往!
数学学院
2016年4月13日
报告摘要1:
In this paper we derive a new energy identity for the general three-dimensional incompressible Navier-Stokes equations by the virtue of a special structure of helicity. The new energy identity is critical with respect to its natural scaling. Moreover, it is conditionally coercive. As an application we construct a family of nite energy smooth large solutions to the Navier-Stokes equations whose critical norms can be arbitrarily large.
报告摘要2:
We consider the evolution of two incompressible, immiscible fluids with different densities in porus media, known as the Muskat problem which in 2D is analogous to the Hele-Shaw cell. We establish, for a class of large and monotone initial data, the global existence of weak solutions. The proof is based on a local well-posedness result for the initial data with certain specific asymptotics at spatial infinity and a new maximum principle for the first derivative of the graph function. This is a joint work with Dr. Fan Deng and professor Fanghua Lin.
报告人简介:
周忆教授简介:周忆教授为国家级人才、国家杰出青年基金获得者。长期从事非线性波动方程的数学理论研究工作,在非线性波动方程解的奇性、整体适定性等领域取得了一系列国际领先的研究成果,曾获教育部自然科学一等奖、国家自然科学三等奖等。
雷震教授简介: 雷震教授为国家级青年人才、国家优秀青年基金获得者,研究方向为流体力学中的偏微分方程。