•  学术报告

关于举行CR几何和复几何研讨会的通知

发布时间:2016-01-25文章来源:华南理工大学数学学院浏览次数:59

报告题目1: L2 estimates on p-comvex Riemannian manifolds.
报 告 人:嵇庆春 教授(复旦大学) 
报告时间:1月27日 (周三)上午 9:00-9:45
报告地点:4号楼4135室
报告摘要:we will talk about L2 estimates on p-comvex Riemannian manifolds. As geometric applications, we derive topological restrictions of p-convexity by using L2 method without any assumptions on sectional curvature.
 
 
报告题目2:Recent progress on the second main Theorem.
报 告 人:于光升 博士(复旦大学)
报告时间:1月27日 (周三)上午 10:00-10:45 
报告地点:4号楼4135室
报告摘要:We will start from Cartan's second main Theorem which is the core of Nevanlinna theory and talk about and its recent progress for hypersurfaces. 
 
 
报告题目3:On the $p$-pseudoharmonic map heat flow
报 告 人: 韩英波 副教授(信阳师范学院)
报告时间:1月27日 (周三)下午 15:00-16:45 
报告地点:4号楼4135室
报告摘要:In this paper, we consider the heat flow for $p$-pseudoharmonic maps from a closed Sasakian manifold $(M^{2n+1},J,/theta)$ into a compact Riemannian manifold $(N^{m},g)$. We prove global existence and asymptotic convergence of the solution for the $p$-pseudoharmonic map heat flow, provided that the sectional curvature of the target manifold $N$ is nonpositive. Moreover, without the curvature assumption on the target manifold, / we obtain global existence and asymptotic convergence of pseudoharmonic map heat flow as well when the its initial $p$-energy is sufficiently small.
 
报告题目4:Parabolic vector bundle and related analytic problems
报 告 人:张玮 副教授(华南理工大学)
报告时间:1月27日 (周三)下午 17:00-17:45 
报告地点:4号楼4135室
报告摘要: Parabolic vector bundle raised from the study of modular curves in algebraic geometry. The Parabolic structure at the puncture corresponds to a growth condition of a noncompact manifold at the infinite. To study them, we borrow the so called concept  weighted Sobolev space form analysis, and try to solve the heat equation on a noncompact manifold under weighted Sobolev space.
 
欢迎广大师生参加!
 
                                                                                                        数学学院
                                                                                                  2016年01月25日