•  学术报告

关于举行几何物理学术研讨会的通知

发布时间:2016-01-15文章来源:华南理工大学数学学院浏览次数:76

几何物理学术研讨会将于2016年1月19日上午9:00—1月21日在4号楼4318室举行,具体报告内容安排如下:

 

 

报告题目1:Hom-Lie-Yamaguti algebras
报  告 人:张涛教授(河南师范大学)
报告时间:2016年1月19日(周二)上午10:00-11:30
报告摘要:We will give an introduction to Lie-Yamaguti algebras and Hom-Lie-Yamaguti algebras. The representation and cohomology theory of Hom-Lie-Yamaguti algebras are developed. As an application, we will verify that this cohomology theory can be used to characterize deformations and extensions of Hom-Lie-Yamaguti algebras.

 

 

报告题目2:Atiyah class and L_infinity algebras
报  告 人:郎红蕾博士(北京大学)
报告时间:2016年1月19日(周二)下午15:00-17:30
报告摘要:To a Lie algebroid pair (L,A), I will define its Atiyah class and  present its geometric meaning by explaining several examples. Then I will talk about the
L_infinity[1]-algebra structure on /Gamma(/wedge A^/star /tensor L/A) associated to a Lie algebroid pair, whoes binary bracket is given by the Atiyah cocycle.

 

 

报告题目3:From r-spin intersection numbers to Hodge integrals
报  告 人:丁祥茂研究员(中国科学院数学研究院)
报告时间:2016年1月20日(周三)上午09:00-10:00
报告摘要:Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r-spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspon- dence, and link it with a Hurwitz partition function and a Hodge partition by operators in a G L(∞) group. Then, from a W1+∞ constraint of the partition function of r-spin inter- section numbers, we get a W1+∞ constraint for the Hodge partition function. The W1+∞ constraint completely determines the Schur polynomials expansion of the Hodge partition function.

 

 

报告题目4:QP-structures of degree 3 and  LWX 2-algebroids
报  告 人:生云鹤教授(吉林大学)
报告时间:2016年1月20日(周三)上午10:30-11:30
报告摘要:In this paper, we give the notion of a Courant 2-algebroid and show that a  QP-structure of degree 3 actually gives rise to a Courant 2-algebroid. This generalizes the result that a  QP-structure of degree 2 gives rise to a Courant  algebroid. We show that one can obtain a Lie 3-algebra from a Courant 2-algebroid. Furthermore, Courant 2-algebroids are constructed from Lie 2-algebroids and  Lie 2-bialgebroids.

 

 

报告题目5:高阶Courant代数胚和Dirac结构
报  告 人:毕艳会博士(南昌航空大学)
报告时间:2016年1月20日(周三)下午16:30-17:30
报告摘要:简要描述高阶Courant代数胚的基本概念和性质,并定义高阶Dirac结构。介绍Nambu-Piosson结构、多辛结构与高阶结构的关系。

 

 

报告题目6:Symplectic Lie algebroids and Manin triples for left-symmetric algebroids
报  告 人:刘杰锋博士(吉林大学)
报告时间:2016年1月21日(周四)上午09:00-11:30
报告摘要:We introduce the notion of an LWX-algebroid, which is a geometric generalized of a quadratic left-symmetric algebra.  More importantly, there is a one-to-one correspondence between symplectic Lie algebroids and LWX-algebroids.  Furthermore, we introduce the notion of a left-symmetric bialgebroid, which is a geometric generalized of left-symmetric bialgebra.  On the double of a left-symmetric bialgebroid, there is an LWX-algebroid structure naturally.  At last, we give a equivalent description of Para-Kahler Lie algebroids in term of  Para-complex  LWX-algebroids.


报告地点:4号楼4318室

欢迎广大师生前往!

                                        数学学院
                                    2016年01月15日