当前位置: 首页  师资队伍  教师风采  教授
基本信息
唐传核

学  位:博士

专业职务:教授

导师情况:硕士生导师、博士生导师

研究方向:食品胶体,食品纳米技术,植物基健康食品研发

联系电话:13660003870

电子邮箱:chtang@scut.edu.cn

通讯地址:广州天河华南理工大学食品科学与工程学院13号楼236室

个人网页:http://www.researcherid.com/rid/B-1510-2009

个人简介

唐传核,1973年生人,华南理工大学食品科学与工程学院教授、博导,教育部新世纪优秀人才,广东省“珠江学者”特 聘教授(2017-2022)。入选“全球前2%顶 尖科学家榜单”(终身科学影响力排名全球第24095名,食品科学领域全国第5名;2021单年度科学影响力排名全球第2437名,食品科学领域全国第2名); “全球高被引学者”榜单(2021-2022);“中国高被引学者”(2014-2021;连续9年)。目前是国际Springer期刊Food Biophysics副主编,MDPI期刊Molecules客座编辑,国际Elsevier期刊Food Hydrocolloids(食品领域顶级期刊,影响因子11.504)、Food Hydrocolloids for Health、Food Research International、Journal of Integrative Agriculture、Springer期刊Plant Foods for Human Nutrition、MDPI期刊Molecules、中国农业科学等8个国内外重要期刊的编委,超过100多家SCI国际期刊的审稿人。

研究领域:蛋白结构与功能;植物基健康(功能性)食品;食品纳米技术

主要学术贡献

(1)于国内首次提出“植物功能性食品”概念,并系统地论述膳食植物来源的微量生物活性物质成份对于人类健康的重要性,以及相关健康食品的研发;

(2)提出了“皮克林纳米稳定剂”学术概念,阐明了球蛋白作为此类纳米稳定剂的实现途径及乳液稳定机制,相关工作引领了国际相关领域在蛋白基皮克林稳定剂的研究前沿;

(3)采用独创的蛋白组装纳米包埋技术,解决了限制难溶天然活性物质工业应用的水溶解性低、生物利用率低及稳定性差等局限性。

学术成绩

(1)出版学术专著两本,《植物功能性食品》(化学工业出版社,2004年)和《植物生物活性物质》(化学工业出版社,2005年);

(2)截至2023年2月23日,发表SCI检索论文180篇,其中Food Hydrocolloids(IF 11.504)58篇。发表的SCI论文入选ESI高被引论文18篇次,曾入选热点论文5篇次。所有SCI论文的总引用次数11623次(Scopus),H-指数为66;

(3)申请国家发明专利20项,其中授权10项;

(4)获教育部高等学校科学研究优秀成果奖自然科学二等奖1项(排名第1)、国家科技进步二等奖1项(排名第7)。

科研项目

(1)国家自然科学基金面上项目,32172343,pH介导大豆蛋白自组装高效包埋姜黄素及结肠靶向输送载体构建,2022/01-2024/12、60万元、在研、主持。

(2)国家自然科学基金面上项目,21872057,皮克林样球蛋白高效稳定温度响应高内相乳液亲水凝胶及构效机理,2019/01-2022/12、66万元、已结题、主持。

(3)“十三五”国家重点研发计划“食品营养及生物活性物质的健康功能作用研究”,蛋白质及其水解物的营养、健康功能、2017/01-2020/12、430万元、已结题、课题负责人。

(4)国家自然科学基金面上项目,31471695、大豆蛋白纳米颗粒皮克林稳定剂的结构特征及其结构化乳液缓释输送载体的构建、2015/01-2018/12、86万元、已结题、主持。

(5)国家自然科学基金面上项目,31171632、豆类蛋白自组装纤维纳米结构凝胶构建小肠靶向缓释输送载体研究、2012/01-2015/12、60万元、已结题、主持。

学术论文

2019年至今的SCI论文

1. Chuan-He, Tang*, Huan-Le, Chen, & Jin-Ru Dong. (2023). Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives. Applied Sciences, 13, 1726.

2. Jiabao Zheng, Chuan-he Tang, Jihong Wu, Ge Ge, Mouming Zhao, & Weizheng Sun. (2023). Heteroprotein complex between soy protein isolate and lysozyme: Protein conformation, lysozyme activity, and structural characterization. Food Chemistry, 11,135509

3. Xiao-Yan Wang, Jun Wang, Chong-Xiang Zhao, Li Ma, Dérick Rousseau*, & Chuan-He Tang*. (2023). Facile fabrication of chitosan colloidal films with pH-tunable surface hydrophobicity and mechanical properties. Food hydrocolloids, 137, 108429.

4. Han Wen, Liu, T. X.*, & Tang, C. H.* (2023). Facilitated formation of soy protein nanoemulsions by inhibiting protein aggregation: A strategy through the incorporation of polyols. Food Hydrocolloids, 137, 108376.

5. Wen-Wen Zhu, Yin Zhang*, & Chuan-He Tang*. (2023). Maximizing cholesterol-lowering benefits of soy protein isolate by glycation with soy soluble polysaccharide. Food Hydrocolloids, 135, 108131.

6. Wang, X. Y., Zhang, J., Dérick Rousseau2*, & Tang, C. H.* (2023). Formation of chitosan-stabilized emulsion gels via pH-induced droplet aggregation. Food Hydrocolloids, 135, 108126.

7. Zhi-Xuan Huang, Wei-Feng Lin*, Yin Zhang*, & Chuan-He Tang*. (2022). Freeze-thaw-stable high internal phase emulsions stabilized by soy protein isolate and chitosan complexes as pH 3.0 as promising mayonnaise replacers. Food Research International, 156, 111309.

8. Huang, Z. X., Lin, W. F.*, Zhang, Y.*, & Tang, C. H.* (2022). Outstanding freeze-thaw stability mayonnaise stabilized solely by a heated soy protein isolate. Food Biophysics, 17, 335-343.

9. J.J. Zhu, C.H. Tang, F.C. Luo, S.W. Yin, & X.Q. Yang. (2022). Topical application of zein-silk sericin nanoparticles loaded with curcumin for improved therapy of dermatitis. Materials Today Chemistry, 24, 100802.

10. Zhu, J. J., Huang, X. N., Yang, T., Tang, C. H., Yin, S. W., Jia, X. J., Yang, X. Q. (2022). An eco-friendly zein nanoparticle as robust cosmetic ingredient ameliorates skin photoaging. Industrial Crops and Products, 177, 114521.

11. Zheng, J., Gao, Q., Ge, G., Wu, J., Tang, C. H., Zhao, M. M., & Sun, W. (2022). Dynamic equilibrium of β-conglycinin/lysozyme heteroprotein complex coacervates. Food Hydrocolloids, 124, 107339.

12. Lili Zhang, Wei-Feng Lin, Yin Zhang*, & Chuan-He Tang*. (2022). New insights into the NaCl impact on emulsifying properties of globular proteins. Food Hydrocolloids, Volume 124, Part B, March 2022, 107342. 【Chengdu Univ.】

13. Zhu, Wen-Wen, & Tang, Chuan-He*. (2022). Mild Preheating Improves Cholesterol-lowering Benefits of Soy Protein via Enhancing Hydrophobicity of its Gastrointestinal Digests: An in vitro study. Food Hydrocolloids, 124, 107282.

14. Zheng, J., Gao Q., Ge G., Wu J., Tang C.-H., Zhao M., & Sun W. (2022). Sodium chloride-programmed phase transition of β-conglycinin/lysozyme electrostatic complexes from amorphous precipitates to complex coacervates. Food Hydrocolloids, 124, 107247.

15. Zheng J., Gao Q., Ge G., Wu J., Tang C.-H., Zhao M., & Sun W. (2021). Heteroprotein complex coacervate based on β-conglycinin and lysozyme: Dynamic protein exchange, thermodynamic mechanism, and lysozyme Activity. Journal of Agricultural and Food Chemistry, 69, 7948-7959.

16. Chen, X. H., & Tang, C. H. * (2021). Highly Transparent Antioxidant High Internal Phase Emulsion Gels Stabilized Solely by c-Phycocyanin: Facilitated Formation through Subunit Dissociation and Refractive Index Matching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625,  126866. [IF 4.539]

17. Tang, C. H.* (2021). Assembled milk proteins nano-architectures as potential nanovehicles for nutraceuticals. Advances in Colloid and Interface Science, 292, 102432.  [IF 12.984]

18. Tang, C. H.* (2021). Nano-architectural assembly of soy proteins: A promising strategy to fabricate nutraceutical nanovehicles. Advances in Colloid and Interface Science, 291, 102402. [IF 12.984]

19. Tang, C. H.* (2021). Assembly of food proteins for nano- encapsulation and delivery of nutraceuticals (a mini-review). Food Hydrocolloids, 117, 106710. [IF 9.149]

20. Yang, T., & Tang, C. H. * (2021). Holocellulose nanofibers from insoluble polysaccharides of Okara by mild alkali planetary ball milling: Structural characteristics and emulsifiying properties.  Food Hydrocolloids, 115, 106625.

21. Yang, T., Yan, Hui-Ling, & Tang, C. H. * (2021). Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of Okara. Food Hydrocolloids, 111, 106386.

22. Tang, C. H.* (2021). Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals (a review). Food Hydrocolloids, 112, 106344

23. Chen, X. H., & Tang, C. H. * (2021). Transparent High Internal Phase Emulsions Stabilized Solely by proteins. Colloids and Surfaces A: Physicochemical. and Engineering Aspects, 608, 125596.

24. Jiabao Zheng, Chuan-He Tang, & Weizheng Sun. (2020). Heteroprotein complex coacervation: focus on experimental strategies to investigate structure formation as a function of intrinsic and external physicochemical parameters for food applications. Advances in Colloid and Interface Science, 284,102268. [IF 12.984]

25. Fu-Zhen Zhou, Xin-Hao Yu, Jing-Jing Zhu, Shou-Wei Yin, Yi-Gang Yu, Chuan-He Tang, & Xiao-Quan Yang. (2020). Hofmeister Effect-Assistant Fabrication of All-Natural Protein-based Porous Materials Templated from Pickering Emulsions. Journal of Agricultural and Food Chemistry, 68 (40), 11261-11272.

26. Yan-Teng Xu*, Tao Yang; Ling-Ling Liu; Chuan-He Tang*. (2020). One-Step Fabrication of Multifunctional High Internal Phase Pickering Emulsion Gels Solely Stabilized by A Softer Globular Protein Nanoparticle: S-Ovalbumin. Journal of Colloid and Interface Science, 580, 515-527. [IF 8.128]

27. Peng, L. P., & Tang, C. H.* (2020). Outstanding Antioxidant Pickering High Internal Phase Emulsions by Co-assembled Polyphenol-Soy β-Conglycinin Nanoparticles. Food Research International, 136, 109509.

28. Xu, Y. T., Tang, C. H.*, & Binks, B. P.* (2020). Ultraefficient stabilization of high internal phase emulsions by globular proteins in the presence of polyols: Importance of a core-shell Nanostructure.  Food Hydrocolloids, 107, 105968.

29. Chen, F. P., Liu, L. L., & Tang, C. H. * (2020). Spray-drying Microencapsulation of Curcumin Nanocomplexes with Soy Protein Isolate: Encapsulation, Water Dispersion, Bioaccessibility and Bioactivities of Curcumin. Food Hydrocolloids, 105, 105821.

30. Tang, C. H.* (2020). Nanocomplexation of proteins with curcumin: From interaction to nanoencapsulation (a reivew). Food Hydrocolloids, 109, 106106.

31. Wang, X. Y., Wang, J., Rousseau, D.*, & Tang, C. H.* (2020). Chitosan-stabilized emulsion gels via pH-induced droplet aggregation (short communication). Food Hydrocolloids, 105, 105811.

32. Yan-Teng Xu, Yu-Han Wang, Fei-Ping, Chen, & Chuan-He Tang*. (2020). Whether ovalbumin performs as a Particulate or Polymeric Emulsifier is largely determined by pH. Food Hydrocolloids, 103,105694.

33. Hao, Z. Z., Peng, X. Q., & Tang, C. H.* (2020). Edible Pickering high internal phase emulsions stabilized by soy glycinin: Improvement of emulsification performance and Pickering stabilization by glycation with soy soluble polysaccharide. Food Hydrocolloids, 103, 105672.

34. Tang, C. H.* (2020). Globular proteins as soft particles for stabilizing emulsions: Concepts and strategies (a review). Food Hydrocolloids, 103,105664.

35. Jiabao Zheng, Chuan-he Tang, Ge Ge, Mouming Zhao, Weizheng Sun* (2020). Heteroprotein complex of soy protein isolate and lysozyme: Formation mechanism and thermodynamic characterization. Food Hydrocolloids, 101, 105571.

36. Zheng, J., Gao, Q., Tang, C. H., Ge, G., Zhao, M. M., & Sun, W.* (2020). Heteroprotein complex formation of soy protein isolate and lactoferrin: Thermodynamic formation mechanism and morphologic structure. Food Hydrocolloids, 100, 105415.

37. Peng, L. P., Xu, Y. T., Li, X. T., & Tang, C. H. * (2020). Improving the emulsification of soy β-conglycinin by alcohol-induced aggregation. Food Hydrocolloids, 98, 105307.

38. Yang, T., Li, X. T., & Tang, C. H.* (2020). Novel edible Pickering high-internal-phase-emulsion gels efficiently stabilized by unique polysaccharide-protein hybrid nanoparticles from Okara. Food Hydrocolloids, 98, 105285.

39. Xu, Y. T., Tang, C. H.*, & B. P. Binks* (2020). High internal phase emulsions stabilized solely by a globular protein glycated to form soft particles (Short communication). Food Hydrocolloids, 98, 105254.

40. Qiu-Hong Chen, Tong-Xun Liu, & Chuan-He Tang*. (2019). Tuning the stability and microstructure of Pickering emulsions stabilized by cellulose nanocrystals. Industrial Crops & Products, 141, 111733.

41. Ling-Ling Liu, Peng-Zhan Liu, Xiu-Ting Li, Ning, Zhang, Chuan-He Tang* (2019). Novel Soy β-Conglycinin ‘Core-shell’ Nanoparticles as Outstanding Eco-friendly Nanocarriers for Curcumin. Journal of Agricultural and Food Chemistry, 67, 6292-6301[submitted at Oct 25, 2018, revision required at Dec 7, 2018 (submitted), accepted May 22, 2019.]

42. Fu-Zhen Zhou, Xin-Hao Yu, Tao Zeng, Shou-Wei Yin, Chuan-He Tang, & Xiao-Quan Yang. (2019). Fabrication and Characterization of Novel Water-Insoluble Protein Porous Materials Derived from Pickering High Internal-Phase Emulsions Stabilized by Gliadin?Chitosan-Complex Particles. Journal of Agricultural and Food Chemistry, 67, 3423-3431.

43. Yang, T., Liu, T. X., Li, X. T., & Tang, C. H.* (2019). Novel nanoparticles from insoluble soybean polysaccharides of Okara as unique Pickering stabilizers for oil-in-water emulsions. Food Hydrocolloids, 94, 255-267.

44. Huang, X. N., Zhou, F. Z., Yang, T., Yin, S. W., Tang, C. H., & Yang, X. Q.  (2019). Fabrication and Characterization of Pickering High Internal Emulsions (HIPEs) Stabilized by Chitosan-caseinophosphopeptides Nanocomplexes as Oral Delivery Vehicles. Food Hydrocolloids, 93, 34-45.

45. Liu, L. L., Li, X. T., Zhang, N.*, & Tang, C. H.* (2019). Novel Soy β-conglycinin nanoparticles by ethanol-assisted disassembly and reassembly: Outstanding nanocarriers for hydrophobic nutraceuticals. Food Hydrocolloids, 91, 246-255.

46. Tang, C. H.* (2019). Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review). Food Hydrocolloids, 91, 92-116.

47. Chen, Y. B., Zhu, X. F., Liu, T. X.**, Lin, W. F., Tang, C. H. *, & Liu, R. (2019). Improving freeze-thaw stability of soy nanoparticle-stabilized emulsions through increasing particle size and surface hydrophobicity Food Hydrocolloids, 87, 404-412.

48. Xu, Y. T., Liu, T. X.**, & Tang, C. H.* (2019). Novel Pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin. Food Hydrocolloids, 80, 21-30.

教授

联系方式

学院办公室:020-87113126
科研工作:020-87114218
教务工作:020-87110738
实验室管理:020-87113034
本科学工:020-87113037
组织人事:020-22236011