[1]  Jialong Jiao*, Zhenwei Chen, Wenhua Xu, Shuxia Bu, Peijie Zhang. Asymmetric water entry of a wedged grillage structure investigated by CFD-FEM co-simulation. Ocean Engineering, 2024, 302, 117612. (SCI, IF=5.0, Q1)

[2]  Jialong Jiao*, Mingming Zhao, Guangyan Jia, Shang Ding. SPH simulation of two side-by-side LNG ships’ motions coupled with tank sloshing in regular waves. Ocean Engineering, 2024, 297, 117022. (SCI, IF=5.0, Q1)

[3]  Jialong Jiao, Huilong Ren, C. Guedes Soares. Vertical and horizontal bending moments on the hydroelastic response of a large-scale segmented model in a seaway. Marine Structures, 2021, 79, 103060. (SCI, IF=3.9, Q1)

[4]  Jialong Jiao, Songxing Huang, C. Guedes Soares. Viscous fluid–flexible structure interaction analysis on ship springing and whipping responses in regular waves. Journal of Fluids and Structures, 2021, 106, 103354. (SCI, IF=3.6, Q2)

[5]  Jialong Jiao, Songxing Huang, Shan Wang, C. Guedes Soares. A CFD–FEA two-way coupling method for predicting ship wave loads and hydroelastic responses. Applied Ocean Research, 2021, 117, 102919. (SCI, IF=4.3, Q1)

[6]  Jialong Jiao, Songxing Huang, Tahsin Tezdogan, Momchil Terziev, C. Guedes Soares. Slamming and green water loads on a ship sailing in regular waves predicted by a coupled CFD–FEA approach. Ocean Engineering, 2021, 241, 110107. (SCI, IF=5.0, Q1)

[7]  Jialong Jiao, Shuzheng Sun, Jide Li, Christiaan Adika Adenya, Huilong Ren, Chaohe Chen, Dongjiao Wang. A comprehensive study on the seakeeping performance of high speed hybrid ships by 2.5D theoretical calculation and different scaled model experiments. Ocean Engineering, 2018, 160: 197–223. (SCI, IF=5.0, Q1)

[8]  Jialong Jiao, Chaohe Chen, Shuzheng Sun, Christiaan Adika Adenya, Huilong Ren. Reproduction of ocean waves for large-scale model seakeeping measurement: The case of coastal waves in Puerto Rico & Virgin Islands and Gulf of Maine. Ocean Engineering, 2018, 153: 71–87. (SCI, IF=5.0, Q1)

[9]  Jialong Jiao, Haicheng Yu, Chaohe Chen, Huilong Ren. Time-domain numerical and segmented model experimental study on ship hydroelastic responses and whipping loads in harsh irregular seaways. Ocean Engineering, 2019, 185: 59–81. (SCI, IF=5.0, Q1)

[10] Jialong Jiao, Songxing Huang, Carlos Guedes Soares. Numerical simulation of ship motions in cross waves using CFD. Ocean Engineering, 2021, 223, 108711. (SCI, IF=5.0, Q1)

[11] Jialong Jiao, Huilong Ren, C. Guedes Soares. A review of large-scale model at-sea measurements for ship hydrodynamics and structural loads. Ocean Engineering, 2021, 227, 108863.(SCI, IF=5.0, Q1)

[12] Jialong Jiao, Huilong Ren, Shuzheng Sun, Ning Liu, Hui Li, Christiaan Adika Adenya. A state-of-the-art large scale model testing technique for ship hydrodynamics at sea. Ocean Engineering, 2016, 123: 174–190.(SCI, IF=5.0, Q1)

[13] Jialong Jiao, Huilong Ren, Shuzheng Sun. Assessment of surface ship environment adaptability: A fuzzy comprehensive evaluation method. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(4): 344–359. (SCI, IF=2.2, Q2)

[14] Jialong Jiao, Chaohe Chen, Huilong Ren. A comprehensive study on ship motion and load responses in short-crested irregular waves. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 364–379. (SCI, IF=2.2, Q2)

[15] Jialong Jiao, Songxing Huang. CFD simulation of ship seakeeping performance and slamming loads in bi-directional cross wave. Journal of Marine Science and Engineering, 2020, 8(5), 312. (SCI, IF=2.9, Q1)

[16] Jialong Jiao, Zhanyang Chen, Chaohe Chen, Huilong Ren. Time-domain hydroelastic analysis of nonlinear motions and loads on a large bow flare ship in high irregular seas. Journal of Marine Science and Technology, 2020, 25(2): 426–454. (SCI, IF=2.6, Q2)

[17] Jialong Jiao*, Zhenwei Chen, Sheng Xu. CFD-FEM simulation of water entry of aluminium flat stiffened plate structure considering the effects of hydroelasticity. Brodogradnja, 2024, 75(1), 75108. (SCI, IF=1.8, Q3)

[18] Jialong Jiao, Shuzheng Sun, Huilong Ren. Predictions of wave induced ship motions and loads by large-scale model measurement at sea and numerical analysis. Brodogradnja, 2016, 67(2): 81–100.(SCI, IF=1.8, Q3)

[19] Jialong Jiao, Huilong Ren, Shuzheng Sun, Christiaan Adika Adenya. Investigation of a ship’s hydroelasticity and seakeeping performance by means of large-scale segmented self-propelling model sea trials. Journal of Zhejiang University - SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 468–484. (SCI, IF=3.2, Q2)

[20] Jialong Jiao, Huilong Ren, Christiaan Adika Adenya, Chaohe Chen. Development of a shipboard remote control and telemetry experimental system for large-scale model’s motions and loads measurement in realistic sea waves. Sensors, 2017, 17(11), 2485: 1–26. (SCI, IF=3.9, Q2)

[21] Jialong Jiao, Yong Jiang, Hao Zhang, Chengjun Li, Chaohe Chen. Predictions of ship extreme hydroelastic load responses in harsh irregular waves and hull girder ultimate strength assessment. Applied Sciences. 2019, 9(2), 240: 1–24. (SCI, IF=2.7, Q2)

[22] Jialong Jiao, Huilong Ren, Christiaan Adika Adenya. Experimental and numerical analysis of hull girder vibrations and bow impact of a large ship sailing in waves. Shock and Vibration, 2015: 1–10. Article ID 706163.(SCI, IF=1.6, Q3)

[23] Jialong Jiao, Huilong Ren, Shuzheng Sun, Christiaan Adika Adenya. Experimental investigation of wave-induced ship hydroelastic vibrations by large-scale model measurement in coastal waves. Shock and Vibration, 2016: 1–14. Article ID 9296783. (SCI, IF=1.6, Q3)

[24] Jialong Jiao, Yulin Zhao, Yufei Ai, Chaohe Chen, Tianhui Fan. Theoretical and experimental study on nonlinear hydroelastic responses and slamming loads of ship advancing in regular waves. Shock and Vibration, 2018: 1–26. Article ID 2613832. (SCI, IF=1.6, Q3)

[25] Jialong Jiao, Huilong Ren. Characteristics of bow-flare slamming and hydroelastic vibrations of a vessel in severe irregular waves investigated by segmented model experiments. Journal of Vibroengineering, 2016, 18(4): 2475–2494.(SCI, IF=1.0, Q0)

[26] Jialong Jiao*, Tahsin Tezdogan. Ship motions and wave loads. Journal of Marine Science and Engineering, 2023, 11, 491. (SCI, IF=2.9, Q1)

[27] Jialong Jiao, Huilong Ren, Chaohe Chen. Model testing for ship hydroelasticity: A review and future trends. Journal of Shanghai Jiao Tong University (Science), 2017, 22(6): 641–650. (EI期刊)

[28] Jialong Jiao, Yulin Zhao, Chaohe Chen, Xiaochen Li. Slamming and green water loads on bow-flare ship in regular head waves investigated by hydroelasticity theory and experiment. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 559–570. (EI期刊)

[29] 焦甲龙,孙树政,任慧龙. 水面舰船风浪环境适应性模糊综合评价方法. 哈尔滨工程大学学报, 2014, 35(6): 667–673. (EI期刊)

[30] 焦甲龙,孙树政,任慧龙,孙慧. 一种非线性水波自由面模型及其海浪数值模拟. 华中科技大学学报, 2015, 43(4): 89–92. (EI期刊)

[31] 焦甲龙,任慧龙,杨虎,毛德龙. 分段模型波浪载荷试验槽型龙骨梁设计与研究. 振动与冲击, 2015, 34(14): 11–15.(EI期刊)

[32] 焦甲龙,任慧龙,孙树政,孙黎明,谭伟. 实际海浪环境中大尺度模型波浪载荷试验技术研究. 中国造船, 2016, 57(1): 50–58.(EI期刊)

[33] 焦甲龙,任慧龙,于海成. 船舶在斜浪规则波中的载荷响应分析. 上海交通大学学报, 2016, 50(3): 407–412. (EI期刊)

[34] 焦甲龙,陈超核,任慧龙,孙树政,李积德. 舰船大尺度模型耐波性试验海浪相似性分析. 哈尔滨工程大学学报, 2019, 40(1): 217–226. (EI期刊)

[35] 焦甲龙,卿川东,任慧龙,陈超核. 基于FEM–BEM法考虑弹振效应的超大型船舶结构疲劳损伤分析. 中国造船, 2019, 60(2): 117–130. (EI期刊)

[36] 焦甲龙,赵玉麟,张皓,任慧龙. 船舶波浪载荷与砰击载荷的大尺度模型水弹性试验研究.振动与冲击, 2019, 38(20): 229–236. (EI期刊)

[37] 焦甲龙,孙树政,李积德,陈超核. 基于系统辨识的大尺度模型耐波性试验实船响应外推预报.船舶力学, 2019, 23(11): 1310–1319.(EI期刊)

[38] 焦甲龙,陈超核,任慧龙. 短峰波中船舶运动与波浪载荷的频域水弹性理论与试验研究,船舶力学, 2020, 24(4): 427–438.(EI期刊)

[39] 焦甲龙,陈超核,任慧龙. 真实海况下船舶水弹性响应及砰击载荷的大尺度模型试验研究.船舶力学, 2021, 25(2): 137–145. (EI期刊)

[40] 焦甲龙,黄松兴,童晓旺. 方形波浪中船舶运动特性的CFD数值模拟研究.中国造船, 2020, 61(3): 140–151. (EI期刊)

[41] 焦甲龙,黄松兴,陈超核. 基于RANS的短峰波中船舶耐波性预报.中国造船, 2020, 61(S2): 152–157. (EI期刊)

[42] 焦甲龙,黄松兴. 穿浪单体船型水动力性能的CFD数值模拟研究.中国造船, 2021, 62(2): 154–166. (EI期刊)

[43] 焦甲龙,张皓,陈远明,孙树政. 长峰与短峰不规则波对船舶运动与波浪载荷的影响分析.中国舰船研究, 2023, 18(1): 107–115.

[44] 黄松兴,焦甲龙,孙树政,陈超核. 基于CFD的单体复合船水动力性能分析.哈尔滨工程大学学报, 2021, 42(1): 105–111.(EI期刊)

[45] 黄松兴,焦甲龙*,陈超核. 方形波浪中船舶运动特性及安全航行策略.浙江大学学报(工学版), 2021, 55(8): 1473–1481. (EI期刊)

[46] 丁绱,焦甲龙*,赵明明. 液舱晃荡与浮体运动耦合的二维与三维SPH模拟影响研究.中国造船, 2023, 64(1): 180–191. (EI期刊)

[47] 陈超核,杨跃富*,李平,焦甲龙. 海洋结构物腐蚀损伤及腐蚀疲劳评估方法研究综述.船舶力学, 2023, 27(9): 1413–1429. (EI期刊)

[48] 王强,焦甲龙. 基于全非线性边界元法的楔形体入水冲击载荷特性研究. 兵器装备工程学报, 2024.

[49] 胡敏,吴海金,焦甲龙. “南天龙”号起重船的吊机结构应力测试与分析. 机械设计与制造, 2024.

[50] 张皓,郝承明,曲自信,喻巧,焦甲龙. 基于CFD的船舶水动力计算收敛性分析. 造船技术, 2023, 51(2): 10–17.

[51] 韩春生,郭京,焦甲龙,孙树政. 实际海浪环境中舰船大尺度模型试验研究进展. 舰船科学技术, 2017, 39(9): 1–5.

[52] Songxing Huang, Jialong Jiao*, Chaohe Chen*. CFD prediction of ship seakeeping behavior in bi-directional cross wave compared with in uni-directional regular wave. Applied Ocean Research. 2021, 107, 102426. (SCI, IF=4.3, Q1)

[53] Songxing Huang, Jialong Jiao*, Chaohe Chen*. Numerical prediction of ship motion and slamming load characteristics in cross wave. Journal of Marine Science and Technology. 2022, 27: 104–124. (SCI, Q3, IF=2.6, Q2)

[54] Songxing Huang, Jialong Jiao*, C. Guedes Soares. Uncertainty analyses on the CFD–FEA co-simulations of ship wave loads and whipping responses. Marine Structures, 2022, 82, 103129. (SCI, IF=3.9, Q1)

[55] Zhenwei Chen, Jialong Jiao*, Shuai Chen, Fan Zhang, Qiandong Feng. CFD-FEM simulation of hydroelastic responses and slamming loads of a bow-flare ship advancing in head regular waves. Ships and Offshore Structures, 2024. (SCI, IF=2.1, Q2)

[56] Zhenwei Chen, Jialong Jiao*, Shan Wang, C. Guedes Soares. CFD-FEM simulation of water entry of a wedged grillage structure into Stokes waves. Ocean Engineering, 2023, 275, 114159. (SCI, IF=5.0, Q1)

[57] Zhenwei Chen, Jialong Jiao*, Qiang Wang, Shan Wang. CFD-FEM simulation of slamming loads on wedge structure with stiffeners considering hydroelasticity effects. Journal of Marine Science and Engineering, 2022, 10, 1591. (SCI, IF=2.9, Q1)

[58] Zhanyang Chen, Jialong Jiao, Hui Li. Time-domain numerical and segmented ship model experimental analyses of hydroelastic responses of a large container ship in oblique regular waves. Applied Ocean Research. 2017, 67: 78–93.(SCI, IF=4.3, Q1)

[59] Zhanyang Chen, Jialong Jiao. Investigation of effects of wave directions on hull wave loads by hydroelastic experimental method. Journal of Marine Science and Technology-Taiwan. 2017, 25: 680–688. (SCI, IF=0.5, Q4)

[60] Haicheng Yu, Yi Xia, Jialong Jiao, Huilong Ren. Investigation on ship hydroelastic vibrational responses in waves. Applied Sciences. 2018, 8, 2327. (SCI, IF=2.7, Q2)

[61] Ying Tang, Shili Sun, Ruisong Yang, Huilong Ren, Xin Zhao, Jialong Jiao. Nonlinear bending moments of an ultra large container ship in extreme waves based on a segmented model test. Ocean Engineering, 2022, 243, 110335. (SCI, IF=5.0, Q1)

[62] Zhenzhou Sun, Hongchao Lu*, Jiefeng Chen, Jialong Jiao*. An efficient noise elimination method for non-stationary and non-linear signals by averaging decomposed components. Shock and Vibration, 2022: 1–11. Article ID 2068218. (SCI, IF=1.6, Q3)

[63] Wenhua Xu, Guodong Xu, Jialong Jiao. Experimental study of the propulsive performance and wake interactions of tandem flapping foils. Ocean Engineering, 2024, 303, 117731. (SCI, IF=5.0, Q1)

[64] Christiaan Adenya, Huilong Ren, Jialong Jiao. Experimental investigation of the behaviour of a large ship in irregular waves. International Journal of Engineering Research in Africa. 2016, 23: 103–112. (EI期刊)

[65] Mingming Zhao, Jialong Jiao*. Smoothed-particle hydrodynamics simulation of ship motion and tank sloshing under the effect of regular waves. Fluid Dynamics & Materials Processing, 2024, 20(5): 1045–1061. (EI期刊)