科研动态
- 华南理工王辉副教授 Nature Communications :靶向线粒体的自发光氟化高分子纳米粒动脉粥样硬化治疗! 11-10
- 华南理工孔宪教授 AFM:PEO基聚合物电解质中氟化模式对溶剂化和离子传输性质的调控 11-10
- 华南理工科研人员合作成果,在Nature发表! 11-03
- 华南理工大学王林格教授团队 Small:时间分辨小角 X 射线揭示聚合诱导自组装两嵌段共聚物胶束的生成机制 09-12
- 华南理工大学郎超团队《Giant》:基于光引发聚合诱导自组装的梯度水凝胶 08-20
- 华南理工大学林志伟教授ACS Nano:基于有序DNA包裹的单手性碳纳米管构建的超灵敏铜离子植物传感平台 08-04
Micro-and-nanometer topological gradient of block copolymer fibrous scaffolds towards region-specific cell regulation
Lei Chen, Qianqian Yu*, Yifan Jia, Mengmeng Xu, Yingying Wang, Jing Wang,Tao Wen*, Linge Wang*
Journal of Colloid and Interface Science 606 (2022) 248-260
https://doi.org/10.1016/j.jcis.2021.08.021
Abstract:

Regulating cell behavior and function by surface topography has drawn significant attention in tissue engineering. Herein, a gradient fibrous scaffold comprising anisotropic aligned fibers and isotropic annealed fibers was developed to provide a controllable direction of cell migration, adhesion, and spreading. The electrospun aligned fibers were engraved to create surface gradients with micro-and-nanometer roughness through block copolymer (BCP) self-assembly induced by selective solvent vapor annealing (SVA). The distinct manipulation of cell behavior by annealed fibrous scaffolds with tailored self-assembled nanostructure and welded fibrous microstructure has been illustrated by in situ/ex situ small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and in vitro cell culture. Further insights into the effect of integrated gradient fibrous scaffold were gained at the level of protein expression. From the perspective of gradient topology, this region-specific scaffold based on BCP fibers shows the prospect of guiding cell migration, adhesion and spreading and provides a generic method for designing biomaterials for tissue-engineering.
