科研动态
- 孔宪教授课题组本科生独立工作发表在Mol. Syst. Des. Eng.:电荷监督的等变架构实现数据高效的分子性质预测 02-04
- 华南理工大学孔宪教授团队 《Small》:不对称表面电荷修饰调控受限聚合物电解质中的溶剂化结构和离子电导率 01-28
- 华南理工王宇团队JACS: AI赋能确立“催组装三要素”新原理,开辟手性材料智能创制新范式 12-25
- 华南理工王辉副教授 Nature Communications :靶向线粒体的自发光氟化高分子纳米粒动脉粥样硬化治疗! 11-10
- 华南理工孔宪教授 AFM:PEO基聚合物电解质中氟化模式对溶剂化和离子传输性质的调控 11-10
- 华南理工科研人员合作成果,在Nature发表! 11-03
Photo-reconfigurable twisting structure in chiral liquid crystals triggered by photoresponsive surface
Junichi Kougo, Fumito Araoka, Osamu Haba, Koichiro Yonetake, Satoshi Aya*
J. Chem. Phys. 155, 061101(2021)
https://doi.org/10.1063/5.0061599
ABSTRACT

Shape-transformable molecular additives with photoresponsivity, such as azobenzene or spiropyran, in matter are known to decrease the local order parameter and lead to drastic state variations under light irradiation. For example, a liquid crystalline state can be transformed to an isotropic liquid state by photo-exciting a tiny amount of azobenzene additives from trans- to cis-conformers. On the other hand, structural or shape transformation without changing the phase state is also intriguing since it offers an opportunity for manipulating specific structures. Here, we demonstrate an active control of the topology of chiral particle-like twisting structures, dubbed toron, by light. Interestingly, the individual twisting structure is fully reconfigurable between spherical and unique branched topological states. We reveal that the shape transformation is driven by the free-energy competition between the variation of surface anchoring strength and the elastic energy stored in the twisting structure. The mean-field simulation based on the Landau–de Gennes framework shows that the elastic anisotropy plays the dominant role in modifying the toron topology upon weak anchoring. The results offer a new path for understanding the process of topology-involved shape transformation and fabrication of novel functional materials.
论文链接:
https://aip.scitation.org/doi/full/10.1063/5.0061599
