主要论文
♦国际期刊
[41]S. Feng, Y. K. Wang, Z. N. Xie*. Estimating extreme wind pressure for long-span roofs: Sample independence considerations. Journal of Wind Engineering and Industrial Aerodynamics. 2020, 205:104341. https://doi.org/10.1016/j.jweia.2020.104341
[40]Z. N. Xie, C. L. Liu, X. F. Yu*. Field measurements and wind tunnel experimental investigations of wind effects on Guangzhou West Tower. Structural Design of Tall and Special Buildings. 2020;29: e1774. https://doi.org/10.1002/tal.1774
[39]L. L. Zhang, Y. K. Wang, Z. N. Xie*.Three‐dimensional coupled wind‐induced vibration calculation method for super high‐rise buildings based on high‐frequency force balance technology. Structural Design of Tall and Special Buildings. 2020;29:e1772. https://doi.org/10.1002/tal.1772
[38] L. L. Zhang, X. Q. Hu, Z. N. Xie*, B. Q. Shi, L. Zhang, R. H. Wang. Field measurement study on time-varying characteristics of modal parameters of super high-rise buildings during super typhoon. Journal of Wind Engineering & Industrial Aerodynamics. 2020, 200:104139
[37]X. Wang, Y.H Qian, X.F. Yu*, Z.N. Xie. Net Pressure and correlation characteristics between internal and external pressures for tall building with opening. Structural Design of Tall and Special Buildings. 2019, 28(9): e1607.
[36]X.F. Yu, M. Gu*, Z.N. Xie. Linearized analysis of the internal pressures for a two-compartment building with leakage. Wind and Structures. 2019, 28(2): 89-97.
[35]X.F. Yu, Z.N. Xie, M. Gu*. Coupling vibration between wind-induced internal pressure and flexible roof for buildings with a dominant opening and background leakage. KSCE Journal of Civil Engineering. 2019, 23(9):4075-4084.
[34]L. L. Zhang, X. Q. Hu, Z. N. Xie*. Identification method and application of aerodynamic damping characteristics of super high-rise buildings under narrow-band excitation. Journal of Wind Engineering and Industrial Aerodynamics. 2019, 189:173-185.
[33]X. F. Yu, J. X. Gao, Z. N. Xie*, X. Wang. Experimental investigation of wind-induced internal pressures in nominally sealed building structures. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2019, 20(7):487-498.
[32] Zengshun Chen, Huaqiang Li, Xu Wang, Xianfeng Yu*, Zhuangning Xie. Internal and external pressure and its non-Gaussian characteristics of long-span thin-walled domes. Thin-walled Structures. 2019, 134: 428-441.
[31] Lele Zhang, Zhuangning Xie, Xianfeng Yu*. Method for Decoupling and Correction of Dynamical Signals in High-Frequency Force Balance Tests. ASCE Journal of Structural Engineering. 2018, 144(12): 04018216.
[30] X.F. Yu, Z.N. Xie*, M. Gu. Interference effects between two tall buildings with different section sizes on wind-induced acceleration. Journal of Wind Engineering and Industrial Aerodynamics. 2018, 182:16-26.
[29] T. Deng, J.Y. Fu, Z.N. Xie, Y.L. Pi, B.Q. Shi.An experimental study on the wind pressure distribution of tapered super high‐rise buildings.Struct Design Tall Spec Build. 2018;e1483.
[28] Ji-Yang Fu, Ben-Gang Wu, Jiu-Rong Wu, Ting Deng, Yong-Lin Pi, Zhuang-Ning Xie.Wind resistant size optimization of geometrically nonlinear lattice structures using a modified optimality criterion method.Engineering Structures. 2018,173:573-588.
[27] Ji-Yang Fu, Ben-Gang Wu, Jiu-Rong Wu, Ting Deng, Yong-Lin Pi, Zhuang-Ning Xie.Design sensitivity analysis for optimal design of geometrically nonlinear lattice structures. Engineering Structures. 2018,168:915-928.
[26] Zhang L L, Cheng W T, Xie Z N*. Wind effect of a twin‐tower super high‐rise building with weak connection. Structural Design of Tall and Special Buildings. 2018;e1503.
[25] Yuanlin Yu, Yi Yang*, Zhuangning Xie.A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building, Building and Environment, 2018, 138, 300-313.
[24] Xu A, Xie Z N*,Gu M. Experimental study of wind effects on two neighbouring super-tall buildings. Advances in Structural Engineering, 2018, 21(3):500-513.
[23] Pan H R, Xie Z N*, Xu A, Zhang L. Wind effects on Shenzhen Zhuoyue Century Center: Field measurement and wind tunnel test. Structural Design of Tall and Special Buildings, 2017, 26(13):e1376.
[22] Yi Yang*, Zhuangning Xie and Ming Gu. Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model. Wind and Structures , 2017, 24(5):465-180.
[21] X.F. Yu, Z.N. Xie*, X Wang, B. Cai. Interference effects between two high-rise buildings on wind-induced torsion. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 159:123-133
[20] Deng T, Yu X F, Xie Z N*. Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings. Wind and Structures,2015, 21( 3): 331-352
[19] Xu A, Xie Z N*, Gu M, Wu J R. Amplitude dependency of damping of tall structures by the random decrement technique. Wind and Structures, 2015, 21(2):159-182
[18] Yu X F, Xie Z N*, Gu M. Interference effects on wind pressure distribution between two high-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2015,142:188–197
[17] Xu A, Xie Z N, Fu J Y, Wu J R, Tuan Alex. Evaluation of wind loads on super-tall buildings from field-measured wind-induced acceleration response. Structural Design of Tall and Special Buildings, 2014, 23(9): 641-663
[16] K.T. TSE, Yi Yang, K.M. Shum and Zhuangning Xie. Numerical simulation of wind loading on roadside noise mitigation structures. Wind and Structures, 2013,17(3):299-315
[15] Yang Yi, Xie Zhuangning, Tse Tim K. T, Jin Xinyang, Gu Ming. Verification of a tree canopy model and an example of its application in wind environment optimization. Wind and Structures, 2012, 15(5): 409-421
[14] Chen Z Q, Liu M G, Hua X G, etc. Flutter, Galloping and Vortex-Induced Vibrations of H-Section Hangers. Journal of Bridge Engineering, 2012, 17(3): 500–508.
[13] To, Alex P., Lam, K. M., Wong, S. Y., Xie, Z. N. Effect of a through-building gap on wind-induced loading and dynamic responses of a tall building. Wind and Structures, 2012, 15(6): 531-553
[12] M. Gu, Z.N. Xie . Interference Effects of Tall Buildings under Wind Action. Acta Mechanica Sinica, 2011, 27(5): 687-696
[11] Yi Yang, Ming Gu, Suqin Chen and Xinyang Jin, New inflow boundary conditions for modeling the neutral equilibrium atmospheric boundary layers in Computational Wind Engineering. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(2): 88-95 (2014列该刊近5年最多引用前25篇论文的第1名)
[10] Z.N. Xie, M. Gu. Across-wind dynamic response of high-rise building under wind action with interference effects from one and two tall buildings. The Structural Design of Tall and Special Buildings, 2009, 18: 37-57
[9] Fu J Y,Xie Z N, Li Q S. Equivalent Static Wind Loads on Long-Span Roof Structures. Journal of Structural Engineering, 2008, 134(7): 1115-1128
[8] Yi Yang, Yong Quan, Xinyang Jin, Yukio Tamura, Ming Gu. Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise building. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 2080-2092 (2013列该刊近5年最多引用前25篇论文的第22名)
[7] Z.N. Xie, M. Gu. Simplified evaluation of wind-induced interference effects among three tall buildings. Journal of wind engineering and industrial aerodynamics, 2007, 95(1): 31-52(2012列该刊近5年最多引用前25篇论文的第10名)
[6] J.Y. Fu, Q.S. Li, Z.N. Xie. Prediction of wind loads on a large flat roof using fuzzy neural networks. Engineering Structures, 2006, 28(1): 153-161
[5] M. Gu, Z. N. Xie, P. Huang. Along-wind dynamic interference effects of tall buildings. Advances in Structural Engineering, 2005, 8(6): 623-635
[4] J.Y. Fu, Q.S. Li, Z.N. Xie. Wind effects on a large cantilevered flat roof: loading characteristics and strategy of reduction. Wind and Structures, 2005, 8 (5): 357-372.
[3] Z.N. Xie, M. Gu. A correlation-based analysis on wind-induced interference effects between two tall buildings. Wind and Structures, 2005, 8(3): 163-178
[2] Z.N. Xie, M. Gu. Mean Interference effects among Tall Buildings. Engineering Structures, 2004, 26: 1173-1183
[1] Ni Z H, He C K, Xie Z N etc. Experimental test on bridge jointed twin-towered buildings to stochastic wind loads. Wind & Structures, 2001, 4(1): 63-72
♦中文重要期刊
[78] 刘春雷,石碧青,张乐乐,谢壮宁. 强台风作用下深圳卓越世纪中心的实测研究,土木工程学报,2020,53(9):22-30.
[77] 解学峰,杨易.一种通用高层建筑模型烟囱效应的数值模拟分析[J]. 工程力学,2020, 37(3): 217-227. doi: 10.6052/j.issn.1000-4750.2019.05.0251
[76] 胡晓兵,杨易.基于NSRFG方法的标准地貌风场大涡模拟研究[J]. 工程力学,doi: 10.6052/j.issn.1000-4750.2019.10.0601
[75] 宣颖,谢壮宁.大跨度金属屋面风荷载特性和抗风承载力研究进展. 建筑结构学报,2019,40(3):41-49
[74] 杨易*,万腾骏,王葵,谢壮宁. 高层建筑烟囱效应及风压联合作用的模拟研究, 湖南大学学报(自然科学版),2018,45(11):10-19.
[73] 肖艳,杨易*. 拱形屋盖结构不平衡雪荷载的模拟研究. 工程力学,2018,35(10):152-161.
[72] 余远林,杨易*,刘付均,石碧青,谢壮宁. 南宁五象东盟塔风振响应大涡模拟研究. 振动与冲击,2018,37(21):78-86.
[71] 张乐乐, 谢壮宁. 高频底座力天平试验的耦合气动荷载修正方法的研究及应用. 建筑结构学报, 2018, 39(8): 10-17.
[70] 罗凯文,杨易,谢壮宁.基于k-ε模型模拟平衡态大气边界层的比较研究. 工程力学,2018,35(2):21-29.
[69] 姚博, 聂铭, 谢壮宁, 肖凯.台风“海马”登陆过程近地风场脉动特性研究 . 建筑结构学报, 2018, 39(01): 28-34.
[68] 刘慕广, 谢壮宁, 余先锋, 石碧青. 屋盖倾角对悬挑曲面屋盖风压特性的影响. 建筑结构学报, 2018, 39(01): 21-27.
[67] 余先锋,谢壮宁,刘海明,张承,王旭,董锐. 气柱共振对开洞结构内压风洞试验的影响[J]. 振动与冲击, 2018, 37(4):9-13.
[66] 余先锋,谢壮宁,刘慕广,刘海明. 超高层建筑顺风向加速度的干扰效应研究 . 工程力学,2017,34(12): 143-149,170
[65] 余先锋,谢壮宁,李尚启,王旭. 开洞超高层建筑的风致内压干扰效应. 建筑结构学报,2017,38(10): 95-101
[64] 吴玖荣,郑庆星,傅继阳,唐争兵,谢壮宁. 高层建筑基于风速风向联合概率分布作用的风致响应可靠度分析. 建筑结构学报,2017,38(10): 88-94
[63] 杨易,谢壮宁,石碧青. 屋顶构造形式对传统居民风荷载特性的影响. 建筑结构学报,2017,38(2): 143-150
[62] 余先锋, 段旻, 谢壮宁. 突然开孔结构风致瞬态内压极值研究. 振动与冲击, 2017, 36(9):63-67.
[61] 刘慕广, 王树彬, 谢壮宁, 石碧青. 基于位移测量的输电塔等效静风荷载研究 . 工程力学,2017,34(4): 160-166
[60] 韩志惠, 陆文强, 顾明,谢壮宁. 高层建筑屋顶广告牌风致响应分析. 振动与冲击, 2017, 36(3):32-37.
[59] 潘浩然,谢壮宁. 改进的贝叶斯谱密度法及其在超高层建筑模态参数识别的应用. 建筑结构学报,2016,37(12): 27-32
[58] 邓挺,谢壮宁,石碧青. 强风作用下退台超高层建筑横风向风效应研究. 建筑结构学报,2016,37(12): 20-26
[57] 谢壮宁,徐安,魏琏,顾明. 深圳京基100风致响应实测研究. 建筑结构学报,2016,37(6):93-100
[56] 刘慕广, 谢壮宁, 石碧青. 高层建筑顶部横梁的风效应. 振动与冲击, 2016, 35(5):103-107.
[55] 余先锋,谢壮宁,于怀懿. 高层建筑间风致扭转干扰效应的试验研究. 建筑结构学报,2015,36(11):78-83
[54] 余先锋,谢壮宁,顾明. 群体高层建筑风致干扰效应研究进展. 建筑结构学报,2015,36(3):1-11
[53] 余先锋, 顾明, 谢壮宁. 内外压作用下平板网架结构风致响应影响参数分析. 振动与冲击, 2015, 34(16):176-182.
[52] 邓挺,谢壮宁,李佳. 强风作用下楔形外形超高层建筑的局部气动抗风措施研究. 建筑结构学报,2014,35(5):142-150
[51] 谢壮宁,李佳,石碧青. 三栋典型超高层建筑的风效应研究:气动荷载特性和风振控制措施. 建筑结构学报,2014,35(4):289-296
[50] 李小康,谢壮宁,王湛. 深圳京基金融中心横风向气动阻尼试验研究. 建筑结构学报,2013,34(12):
[49] 段旻, 谢壮宁, 李小康. 基于SYM小波的多点风压信号预处理方法及其应用. 振动与冲击, 2013, 32(3):50-55.
[48] 余先锋,全涌,顾明. 开孔两空间结构的风致内压响应研究[J]. 空气动力学学报,2013,31(2):151-155
[47] 刘慕广,陈政清. 不同截面参数H型吊杆气动性能. 工程力学,2013,30(5): 221-226
[46 刘慕广,陈政清. 箱型吊杆的风致振动特性. 工程力学,2013,30(3): 233-238
[45] 谢壮宁,朱剑波. 并列布置超高层建筑间的风压干扰效应. 土木工程学报,2012,45(10):23-30
[44] 段旻,谢壮宁. 低矮房屋瞬态内压的风洞试验研究.土木工程学报,2012,45(7):10-16
[43] 余先锋,全涌,顾明. 考虑屋盖柔度的开孔两空间结构风致内压研究[J]. 力学学报,2012,44(4):727-734.
[42] 李小康,谢壮宁,王湛. 深圳京基金融中心横风向风振控制的试验研究. 建筑结构学报,2012,33,(11):12-17
[41] 段旻,谢壮宁. 下击暴流风的大气边界层风洞模拟研究. 建筑结构学报,2012,33(3):126-131
[40] 朱剑波,谢壮宁. 群体高层建筑的峰值风压分布特征. 建筑结构学报,2012,33(1):18-26
[39] 李小康, 谢壮宁. 广州西塔气动荷载特性及风致响应研究. 振动与冲击, 2012, 31(16):104-110.
[38] 陈伏彬, 李秋胜, 傅继阳, 谢壮宁. 大跨屋盖风荷载的频域特性试验研究. 振动与冲击, 2012, 31(5):111-117.
[37] 余先锋,顾明,全涌,樊友川. 考虑背景孔隙的单开孔两空间结构的风致内压响应研究[J]. 空气动力学学报,2012,30(2):238-243
[36] 谢壮宁,李佳. 强风作用下楔形外形超高层建筑横风效应试验研究. 建筑结构学报,2011,32(12): 118-126
[35] 刘帅,谢壮宁,石碧青. 罩棚式低矮房屋屋面风荷载特性及气动抗风措施研究. 建筑结构学报,2011,32(4): 9-16
[34] 李小康,谢壮宁. 大跨度屋盖结构风振响应和等效静风荷载的快速算法和应用. 土木工程学报,2010,43(7):29-36
[33] 陈政清,刘慕广,刘光栋,金志坚. H型吊杆的大攻角风致振动和抗风设计. 土木工程学报,2010,43(2):1-11
[32] 谢壮宁,石碧青,倪振华,杜平. 深圳京基金融中心气动抗风措施试验研究. 建筑结构学报,2010,31(10):1-7
[31] 稽学培,谢壮宁,李小康. 广州西塔风致响应和气动阻尼特性的试验研究. 土木工程学报,2009,42(7):58-64
[30] 杨立国,杨伟,姜国义等. 温州东海广场风荷载数值模拟与风洞试验研究,建筑结构学报,2009,vol.30,suppl.1:144-148
[29] 谢壮宁,方小丹,倪振华. 广州西塔的风效应研究. 建筑结构学报,2009,30(1): 107-114
[28] 陈政清,刘慕广,牟廷敏,汪志昊. H型截面细长杆件颤振稳定性试验研究. 空气动力学学报,2009,27(1): 41-46
[27] 李小康,倪振华,谢壮宁. 本征正交分解用于屋盖风振分析的模态截断准则. 振动工程学报,2009,22(3):274-279.
[26] 石碧青,谢壮宁,倪振华. 用高频底座力天平研究广州西塔的风效应. 土木工程学报,2008,41(2):42-48.
[25] 谢壮宁,洪海波,李神云. 超高层建筑间的干扰效应:建筑外形的影响及干扰因子分布的相关特征. 建筑结构学报,2008,29(2):13-18
[24] 谢壮宁,方小丹,倪振华. 超高层建筑的等效静风荷载-扩展的荷载响应相关方法. 振动工程学报,2008,21(4):398-403
[23] 江棹荣,倪振华,谢壮宁. POD在大跨屋盖风致响应计算中的应用. 土木工程学报,2007,40(6):1-6
[22] 杨伟,金新阳,顾明,陈素琴. 风工程数值模拟中平衡大气边界层的研究与应用,土木工程学报,2007,vol.40(2):9-13
[21] 谢壮宁,倪振华,石碧青. 大跨度屋盖结构的等效静风荷载. 建筑结构学报,2007,28(1): 113-118
[20] 石碧青,洪海波,谢壮宁,倪振华. 大气边界层风洞流场特性的模拟. 空气动力学学报,2007,25(3): 376-380
[19] 洪海波,谢壮宁,倪振华,顾明. 高湍流度风场下金茂大厦的舒适度分析. 工程力学,2007,24(5):101-106
[18] 谢壮宁. 风致复杂结构随机振动分析的一种快速算法———谐波激励法. 应用力学学报,2007,24(2):263-266
[17] 倪振华,江棹荣,谢壮宁. 本征正交分解技术及其在预测屋盖风压场中的应用. 振动工程学报,2007,20(1):1-8
[16] 洪海波,谢壮宁,顾明. 高湍流度下超高层建筑的风致振动响应特性. 建筑结构学报,2006,27(6): 94-100
[15] 谢壮宁,顾明. 任意排列双柱体的风致干扰效应. 土木工程学报,2005,38(10):32-38
[14] 杨易,顾明,陈素琴. 计算风工程中k-ε模型的一类边界条件. 空气动力学学报,2005,23(1):97-102
[13] 谢壮宁,顾明,倪振华. 任意排列三个高层建筑间顺风向动力干扰效应的试验研究. 工程力学,2005,22(5):136-141
[12] 徐安,谢壮宁,倪振华. 用瞬态测压法研究高层建筑的等效设计荷载. 土木工程学报,2004,37(9): 11-16,26
[11] 谢壮宁,顾明,倪振华. 高层建筑群静力干扰效应的试验研究. 土木工程学报,2004,37(6): 16-22,29
[10] 徐安,谢壮宁,葛建斌,倪振华. CAARC高层建筑标准模型层风荷载谱数学模型研究. 建筑结构学报,2004,25(4): 118-123
[9] 黄明开,倪振华,谢壮宁. 大跨圆拱屋盖结构的风致响应分析. 振动工程学报,2004, 17(3):275-279
[8] 傅继阳,谢壮宁,倪振华. 大跨悬挑平屋盖结构风荷载特性的试验研究. 土木工程学报,2003,36(10): 7-14
[7] 谢壮宁,顾明,倪振华. 不同断面宽度群体高层建筑的动力干扰效应,第2部分横风向响应. 建筑结构学报,2003,24(5):50-57
[6] 谢壮宁,顾明,倪振华. 不同断面宽度群体高层建筑的动力干扰效应,第1部分顺风向响应. 建筑结构学报,2003,24(4):8-16
[5] 谢壮宁,石碧青,倪振华. 尾流受扰下复杂断面建筑物的风压分布特性. 建筑结构学报,2002,23(4):27-31
[4] 傅继阳,谢壮宁,倪振华. 大跨屋盖结构风压分布特性的模糊神经网络预测. 建筑结构学报,2002,23(1):62-67
[3] 谢壮宁,倪振华,石碧青. 脉动风压测压管路系统的动态特性分析. 应用力学学报,2002,19(1):5-9
[2] 谢壮宁,倪振华,石碧青. 大跨屋盖风荷载特性的风洞试验研究. 建筑结构学报,2001,22(2):23-28
[1] 倪振华,姚伟军,谢壮宁.高层建筑风致振动研究的瞬态风压积分方法.振动工程学报, 2000, 13(4):544-551(国内首篇介绍采用HFPI方法研究高层建筑风致振动的论文)