叶代启
职称:教授/博士生导师
性别:男
联系电话:020-39380502
电子邮箱:cedqye@scut.edu.cn
硕士招生专业:学术型硕士:083000|环境科学与工程;专业学位硕士:085700|资源与环境
博士招生专业:学术型博士:083000|环境科学与工程;专业学位博士:085700|资源与环境
2014.01-至今:华南理工大学环境与能源学院,院长,学院学术与学位委员会主席,大气环境与污染控制学术团队负责人;
2013.01-2013.12:华南理工大学环境与能源学院,副院长(主持工作);
2004.08-2012.12:华南理工大学环境科学与工程学院,系主任,教授/博士生导师(2004.10),大气环境与污染控制学术团队负责人;
1998.03-2004.07:华南理工大学造纸与环境工程学院,副教授,教授(2004.03);
1997.06-1997.09:英国Warwick大学,进修访问;
1993.12-1998.03:华南理工大学化工系,副教授;
1990.07-1993.12:华南理工大学化工系,教师;
1988.12-1990.04:日本名古屋大学工学部,访问学者(博士联合培养);
1984.09-1990.07:华南理工大学,工业催化专业,工学博士毕业;
1980.09-1984.07:华南工学院,有机化工专业,工学学士毕业;
现任中国环境科学学会常务理事,中国环境科学学会挥发性有机物控制专业委员会常务副主任委员兼秘书长,中国环境科学学会能源与环境分会主任委员,挥发性有机物污染治理技术与装备国家工程实验室主任,广东高校大气污染控制工程研究中心主任,广州市环境科学学会副会长,广州节能环保促进会会长,中国稀土学会催化专业委员会、中国化学会催化专业委员会,以及中国勘察设计环保工程专业专家委员会、中国能源学会专家委员会等委员。
主要从事大气污染控制领域,具体为挥发性有机物(VOCs)减排控制政策研究;VOCs排放特征、排放清单及其反应活性研究;VOCs、机动车排气、室内空气污染控制技术研究与开发;VOCs的非热等离子体及催化净化技术研发等。
作为项目负责人主持国家自然科学基金6项;承担国家和省部级科研项目62项,其中国家“863计划”2项、生态环境部政策研究项目5项、国家环保公益项目2项、国家重点研发计划2项。
主讲本科、硕士生学位课程3门和其它课程4门,其中本科课程《Air Pollution Control Engineering/大气污染控制工程》为第一批校级精品课程;共培养博士和硕士研究生127名以及青年教师14名。
在国内外主要学术期刊上共发表了论文400余篇,其中在国际主要学术期刊Environ.Sci.Technol,Appl. Catal. B, Chem. Eng. J., Catal.Sci.Technol.等发表论文250余篇,已授权专利98件。
研发了多种VOCs吸附和催化功能材料,蓄热(催化)燃烧技术等,开发的VOCs控制成套技术和装备达到国际先进水平,推广应用120多套,研究成果推广应用至全国,案例超过300项。开发的治理技术在全球最大的电子垃圾拆解基地废气整治工程中成功应用。在国内最早提出“分散吸附-移动/集中销毁”模式并在广东贵屿国家循环经济产业园示范应用。完成项目结题验收和科技成果鉴定共5项。
获得了中国专利优秀奖1项、广东省科技进步一等奖1项和广东省科技奖二等奖2项等。参与编写《新化工词典(环境与环境化工部分)》(主编)、《环保科普丛书——VOCs污染防治知识问答》(主编)、《挥发性有机物治理实用手册》、《重点行业企业挥发性有机物现场检查指南(试行)》等书籍6本。
制订了标准11项(国家标准2项、行业标准5项和地方标准4项)。支撑出台国家政策6项、广东省政策5项。长期服务于国家、地方及(化工)园区VOCs污染治理。参与大气污染防治“国十条”、国家环境保护“十二五”规划研究、重点区域“十二五”规划、“十三五”总量控制规划和“十四五”空气质量改善规划等国家重要政策的研究与制订;服务于北京冬奥会、G20峰会、广州亚运等国家重大事件的空气质量保障并获得表彰。
[1]Chen L, Li T, Zhang J, et al. Chemisorbed Superoxide Species Enhanced the High Catalytic Performance of Ag/Co3O4 Nanocubes for Soot Oxidation[J]. ACS APPLIED MATERIALS & INTERFACES, 2021,13(18):21436-21449.
[2]Linghe S, Juxia X, Hairong C, et al. In-Situ characterizations to investigate the nature of Co3+ coordination environment to activate surface adsorbed oxygen for methane oxidation[J]. Applied Surface Science, 2021,556:149712-149713.
[3]Mo S, Li J, Liao R, et al. Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: Synergistic effect of surface decorated and intrinsic O-vacancies[J]. CHEMICAL ENGINEERING JOURNAL, 2021,418.
[4]ZHONG J, ZENG Y, YIN , et al. Controllable transformation from 1D Co-MOF-74 to 3D CoCO3and Co3O4with ligand recovery and tunable morphologies: The assembly process and boosting VOC degradation [J]. Journal of Materials Chemistry A, 2021, 9(11): 6890-7.
[5]ZHANG M, ZOU S, MO S, et al. Enhancement of catalytic toluene combustion over Pt–Co3O4 catalyst through in-situ metal-organic template conversion [J]. Chemosphere, 2021, 262.
[6]XIONG J, YANG J, CHI X, et al. Pd-Promoted Co2NiO4 with lattice Co–O–Ni and interfacial Pd–O activation for highly efficient methane oxidation [J]. Applied Catalysis B: Environmental, 2021, 292
[7]XIONG J, WU K, YANG J, et al. The effect of existence states of PdOx supported by Co3O4 nanoplatelets on catalytic oxidation of methane [J]. Applied Surface Science, 2021, 539.
[8]WU P, JIN X, QIU Y, et al. Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification over Manganese-based Oxide Catalysts [J]. Environmental Science and Technology, 2021,
[9]WU K, SUN Y, LIU J, et al. Nonthermal plasma catalysis for toluene decomposition over BaTiO3-based catalysts by Ce doping at A-sites: The role of surface-reactive oxygen species [J]. Journal of Hazardous Materials, 2021, 405.
[10]WANG X, CHENG H, YE G, et al. Preparation of porous carbon based on partially degraded raw biomass by Trichoderma viride to optimize its toluene adsorption performance [J]. Environmental Science and Pollution Research, 2021.
[11]WANG J, WU Z, NIU Q, et al. Highly efficient adsorptive removal of toluene using silicon-modified activated carbon with improved fire resistance [J]. Journal of Hazardous Materials, 2021, 415.
[12]SUN Y, FAN J, CHENG H, et al. Investigation into the roles of different oxygen species in toluene oxidation over manganese-supported platinum catalysts [J]. Molecular Catalysis, 2021, 507.
[13]SU M, PAN Z, CHONG Y, et al. Boosting the electrochemical performance of hematite nanorodsviaquenching-induced metal single atom functionalization [J]. Journal of Materials Chemistry A, 2021, 9(6): 3492-9.
[14]SONG L, XIONG J, CHENG H, et al. In-Situ characterizations to investigate the nature of Co3+ coordination environment to activate surface adsorbed oxygen for methane oxidation [J]. Applied Surface Science, 2021, 556.
[15]MO S, PENG P, PEI Y, et al. Immobilizing ultrafine bimetallic PtAg alloy onto uniform MnO2 microsphere as a highly active catalyst for CO oxidation [J]. Chinese Chemical Letters, 2021.
[16]MO S, LI J, LIAO R, et al. Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: Synergistic effect of surface decorated and intrinsic O-vacancies [J]. Chemical Engineering Journal, 2021, 418.
[17]LIU P, LIAO Y, LI J, et al. Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt oxides for catalytic oxidation of toluene [J]. Journal of Colloid and Interface Science, 2021, 594(713-26).
[18]LIU P, LIANG X, DANG Y, et al. Effects of Zr substitution on soot combustion over cubic fluorite-structured nanoceria: Soot-ceria contact and interfacial oxygen evolution [J]. Journal of Environmental Sciences (China), 2021, 101(293-303).
[19]LI J, XIAO G, GUO Z, et al. ZSM-5-supported V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of toluene in coal-fired flue gas [J]. Chemical Engineering Journal, 2021, 419.
[20]LEI H, RIZZOTTO V, GUO A, et al. Recent understanding of low-temperature copper dynamics in Cu-chabazite NH3-SCR catalysts [J]. Catalysts, 2021, 11(1): 1-20.
[21]KE Y, LIU R, CHEN X, et al. Volatile organic compounds concentration profiles and control strategy in container manufacturing industry: Case studies in China [J]. Journal of Environmental Sciences (China), 2021, 104(296-306).
[22]JI X, CHEN D, PENG L, et al. Sustainable direct H2O2 synthesis over Pd catalyst supported on mesoporous carbon: The effect of surface nitrogen functionality [J]. Catalysis Today, 2021.
[23]GAO J, WANG J, CHEN L, et al. Activity test and selection of carbon black combustion catalysts under identical experimental conditions [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2021, 41(2): 414-22.
[24]CHENG H, YE G, WANG X, et al. Micro-mesoporous carbon fabricated by Phanerochaete chrysosporium pretreatment coupling with chemical activation: Promoting effect and toluene adsorption performance [J]. Journal of Environmental Chemical Engineering, 2021, 9(2).
[25]ZOU S, ZHANG M, MO S, et al. Catalytic performance of toluene combustion over pt nanoparticles supported on pore-modified macro-meso-microporous zeolite foam [J]. Nanomaterials, 2020, 10(1).
[26]ZHU X, HE H, LI Y, et al. CeO2-supported pt catalysts derived from mofs by two pyrolysis strategies to improve the oxygen activation ability [J]. Nanomaterials, 2020, 10(5).
[27]ZHONG J, ZENG Y, ZHANG M, et al. Toluene oxidation process and proper mechanism over Co3O4 nanotubes: Investigation through in-situ DRIFTS combined with PTR-TOF-MS and quasi in-situ XPS [J]. Chemical Engineering Journal, 2020, 397.
[28]ZHONG J, ZENG Y, CHEN D, et al. Toluene oxidation over Co3+-rich spinel Co3O4: Evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS [J]. Journal of Hazardous Materials, 2020, 386.
[29]ZHAO S, JIN X, WU P, et al. Cu2+-decorated porous Co3O4nanosheets for photothermocatalytic oxidation of toluene [J]. ACS Applied Nano Materials, 2020, 3(10): 10454-61.
[30]ZHANG Y, LIANG L, CHEN Z, et al. Highly efficient Cu/CeO2-hollow nanospheres catalyst for the reverse water-gas shift reaction: Investigation on the role of oxygen vacancies through in situ UV-Raman and DRIFTS [J]. Applied Surface Science, 2020, 516.
[31]ZHANG Q, JIANG Y, GAO J, et al. Interfaces in mof-derived CeO2 –MnOx composites as high-activity catalysts for toluene oxidation: Monolayer dispersion threshold [J]. Catalysts, 2020, 10(6).
[32]ZHANG M, ZOU S, ZHANG Q, et al. Macroscopic Hexagonal Co3O4 Tubes Derived from Controllable Two-Dimensional Metal-Organic Layer Single Crystals: Formation Mechanism and Catalytic Activity [J]. Inorganic Chemistry, 2020, 59(5): 3062-71.
[33]YU L, WANG L, XU W, et al. Corrigendum to ‘Adsorption of VOCs on reduced graphene oxide’ (Journal of Environmental Sciences (2018) 67 (171–178), (S1001074217309877), (10.1016/j.jes.2017.08.022)) [J]. Journal of Environmental Sciences (China), 2020, 90(408).
[34]YAN H, ZHANG W, HOU M, et al. Sources and Control Area Division of Ozone Pollution in Cities at Prefecture Level and Above in China [J]. Huanjing Kexue/Environmental Science, 2020, 41(12): 5215-24.
[35]YAN D, MO S, SUN Y, et al. Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion [J]. Chemosphere, 2020, 247.
[36]XU W, JIANG X, CHEN H, et al. Adsorption-discharge plasma system for toluene decomposition over Ni-SBA catalyst: In situ observation and humidity influence study [J]. Chemical Engineering Journal, 2020, 382.
[37]XU W, CHEN B, JIANG X, et al. Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5 : Acidity/basicity, catalytic activity and reaction mechanism [J]. Journal of Hazardous Materials, 2020, 387.
[38]XU Q, YANG X, RAO M, et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework [J]. Energy Storage Materials, 2020, 26(73-82).
[39]XU Q, LIN J, YE C, et al. Air-Stable and Dendrite-Free Lithium Metal Anodes Enabled by a Hybrid Interphase of C60 and Mg [J]. Advanced Energy Materials, 2020, 10(6).
[40]XIONG J, MO S, SONG L, et al. Outstanding stability and highly efficient methane oxidation performance of palladium-embedded ultrathin mesoporous Co2MnO4 spinel catalyst [J]. Applied Catalysis A: General, 2020, 598.
[41]XIE J, YAN K, ZHU H, et al. Identifying the functional groups effect on passivating perovskite solar cells [J]. Science Bulletin, 2020, 65(20): 1726-34.
[42]WU P, ZHAO S, YU J, et al. Effect of Absorbed Sulfate Poisoning on the Performance of Catalytic Oxidation of VOCs over MnO2 [J]. ACS Applied Materials and Interfaces, 2020, 12(45): 50566-72.
[43]WU P, DAI S, CHEN G, et al. Interfacial effects in hierarchically porous α-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity [J]. Applied Catalysis B: Environmental, 2020, 268.
[44]WEN J, HUANG C, SUN Y, et al. The study of reverse water gas shift reaction activity over different interfaces: The design of cu-plate zno model catalysts [J]. Catalysts, 2020, 10(5).
[45]WANG Z, XU Z, JIN X, et al. Dendrite-free and air-stable lithium metal batteries enabled by electroless plating with aluminum fluoride [J]. Journal of Materials Chemistry A, 2020, 8(18): 9218-27.
[46]WANG K, LIU X, TU S, et al. Low Temperature Catalytic Performance of Manganese and Cerium Complex Oxide Catalyst towards Toluene; proceedings of the IOP Conference Series: Materials Science and Engineering, F, 2020 [C].
[47]WANG K, LIU X, TU S, et al. Catalytic Oxidation of Toluene over Manganese and Cerium Complex Oxide Supported on Zeolite; proceedings of the Journal of Physics: Conference Series, F, 2020 [C].
[48]WANG J, MAO M, SHI X, et al. Enhancement effect of Pt modification on CeO2 on catalytic ozonation of toluene [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2020, 40(5): 1629-39.
[49]SUN Y, LI J, CHEN P, et al. Reverse water-gas shift in a packed bed DBD reactor: Investigation of metal-support interface towards a better understanding of plasma catalysis [J]. Applied Catalysis A: General, 2020, 591.
[50]SUN Y, HUANG C, CHEN L, et al. Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions [J]. Journal of CO2 Utilization, 2020, 37(55-64).
[51]RIZZOTTO V, CHEN D, TABAK B M, et al. Spectroscopic identification and catalytic relevance of NH4+ intermediates in selective NOx reduction over Cu-SSZ-13 zeolites [J]. Chemosphere, 2020, 250.
[52]REN Q, MO S, FAN J, et al. Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface [J]. Chinese Journal of Catalysis, 2020, 41(12): 1873-83.
[53]QIN J, WANG J, YANG J, et al. Metal organic framework derivative-TiO2 composite as efficient and durable photocatalyst for the degradation of toluene [J]. Applied Catalysis B: Environmental, 2020, 267.
[54]MO S, ZHANG Q, LI J, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS [J]. Applied Catalysis B: Environmental, 2020, 264.
[55]LU M, YANG W, YU C, et al. Plasma-catalytic oxidation of toluene on ag modified FeOx/SBA-15 [J]. Aerosol and Air Quality Research, 2020, 20(1): 193-202.
[56]LIANG X M, SUN X B, XU J T, et al. Industrial Volatile Organic Compounds (VOCs) Emission Inventory in China [J]. Huanjing Kexue/Environmental Science, 2020, 41(11): 4767-75.
[57]LIANG X, SUN X, XU J, et al. Improved emissions inventory and VOCs speciation for industrial OFP estimation in China [J]. Science of the Total Environment, 2020, 745.
[58]LIANG L, ZHANG Y, WEN J, et al. Study on Pt-Cu/TiO2{001} nanosheets for CO2 hydrogenation to methanol [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2020, 40(7): 2408-16.
[59]KE Y T, SUN Y H, CHENG H R, et al. Characteristics of Volatile Organic Compounds in Wood Coatings and Automotive Coatings in China [J]. Huanjing Kexue/Environmental Science, 2020, 41(10): 4446-54.
[60]JIN D, YANG X, OU Y, et al. Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage [J]. Science Bulletin, 2020, 65(6): 452-9.
[61]GAO P, ZHUANG L Y, WANG L, et al. Characteristics of Surface Ozone and Impact Factors at Different Station Types During the Autumn in Guangzhou [J]. Huanjing Kexue/Environmental Science, 2020, 41(8): 3527-38.
[62]GAO J, XIONG Y, ZHANG Q, et al. 3D geometric modeling analysis of contact probability effect in carbon black oxidation over MnOx-CeO2 catalysts [J]. Chemical Engineering Journal, 2020, 398(
[63]FENG Y, LIU R Y, LIU L L, et al. VOCs emission characteristics, environmental impact and health risk assessment of typical printing enterprises in Guangzhou [J]. Zhongguo Huanjing Kexue/China Environmental Science, 2020, 40(9): 3791-800.
[64]FAN J, REN Q, MO S, et al. Transient in-situ DRIFTS Investigation of Catalytic Oxidation of Toluene over α-, γ- and β-MnO2 [J]. ChemCatChem, 2020, 12(4): 1046-54.
[65]CHONG Y, PAN Z, SU M, et al. 1D/2D hierarchical Co1-xFexO@N-doped carbon nanostructures for flexible zinc–air batteries [J]. Electrochimica Acta, 2020, 363.
[66]CHENG H, SUN Y, WANG X, et al. Hierarchical porous carbon fabricated from cellulose-degrading fungus modified rice husks: Ultrahigh surface area and impressive improvement in toluene adsorption [J]. Journal of Hazardous Materials, 2020, 392.
[67]CHEN Y, YAN H, YAO Y, et al. Relationships of ozone formation sensitivity with precursors emissions, meteorology and land use types, in Guangdong-Hong Kong-Macao Greater Bay Area, China [J]. Journal of Environmental Sciences (China), 2020, 94(1-13).
[68]ZHUANG L, CHEN Y, FAN L, et al. Study on the ozone formation sensitivity in the Pearl River Delta based on OMI satellite data and MODIS land cover type products [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2019, 39(11): 3581-92.
[69]ZHANG W, CHENG H, NIU Q, et al. Microbial targeted degradation pretreatment: A novel approach to preparation of activated carbon with specific hierarchical porous structures, high surface areas, and satisfactory toluene adsorption performance [J]. Environmental Science and Technology, 2019, 53(13): 7632-40.
[70]ZHANG Q, MO S, LI J, et al. In situ DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts [J]. Catalysis Science and Technology, 2019, 9(17): 4538-51.
[71]ZHANG J N, ZENG C L, LIU R Y, et al. Volatile Organic Compound Emission Characteristics of Furniture Manufacturing Enterprises and the Influence on the Atmospheric Environment [J]. Huanjing Kexue/Environmental Science, 2019, 40(12): 5240-9.
[72]XU W, LIN K, YE D, et al. Performance of toluene removal in a nonthermal plasma catalysis system over flake-like hzsm-5 zeolite with tunable pore size and evaluation of its byproducts [J]. Nanomaterials, 2019, 9(2):
[73]WANG X, WU J, WANG J, et al. Methanol plasma-catalytic oxidation over CeO2 catalysts: Effect of ceria morphology and reaction mechanism [J]. Chemical Engineering Journal, 2019, 369(233-44.
[74]WANG X, LI H, WANG B, et al. Sources and roles of surface reactive oxygen species over CeO2 catalysts for methanol oxidation in plasma [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2019, 39(8): 2725-34.
[75]REN Q, FENG Z, MO S, et al. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene [J]. Catalysis Today, 2019, 160-7.
[76]QIU Y, PAN Z, CHEN H, et al. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting [J]. Science Bulletin, 2019, 64(18): 1348-80.
[77]PANG X, LAN H, ZHONG J, et al. Low-cost photoionization sensors as detectors in GC × GC systems designed for ambient VOC measurements [J]. Science of the Total Environment, 2019, 664(771-9.
[78]MO S, ZHANG Q, ZHANG M, et al. Elucidating the special role of strong metal-support interactions in Pt/MnO2 catalysts for total toluene oxidation [J]. Nanoscale Horizons, 2019, 4(6): 1425-33.
[79]MO S, ZHANG Q, SUN Y, et al. Gaseous CO and toluene co-oxidation over monolithic core-shell Co3O4-based hetero-structured catalysts [J]. Journal of Materials Chemistry A, 2019, 7(27): 16197-210.
[80]MO S, ZHANG Q, REN Q, et al. Leaf-like Co-ZIF-L derivatives embedded on Co2AlO4/Ni foam from hydrotalcites as monolithic catalysts for toluene abatement [J]. Journal of Hazardous Materials, 2019, 364(571-80).
[81]MO S, HE H, REN Q, et al. Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation [J]. Journal of Environmental Sciences (China), 2019, 75(136-44).
[82]LIANG X M, CHEN L G, SUN X B, et al. Raw Materials and End Treatment-based Emission Factors for Volatile Organic Compounds (VOCs) from Typical Solvent Use Sources [J]. Huanjing Kexue/Environmental Science, 2019, 40(10): 4382-94.
[83]LI J, SUN Y, WANG B, et al. Effect of plasma on catalytic conversion of CO2 with hydrogen over Pd/ZnO in a dielectric barrier discharge reactor [J]. Journal of Physics D: Applied Physics, 2019, 52(24):
[84]JIANG Y, GAO J, ZHANG Q, et al. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template [J]. Chemical Engineering Journal, 2019, 371(78-87).
[85]HUANG C, ZHONG W, WEN J, et al. The active sites study of Cu/ZnO plate model catalyst for CO2 hydrogenation to CO [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2019, 39(6): 1942-51.
[86]HUANG C, WEN J, SUN Y, et al. CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: Effects of reducing gas induced Cu nanoparticle morphology [J]. Chemical Engineering Journal, 2019, 374(221-30).
[87]FENG Z, ZHANG M, REN Q, et al. Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation [J]. Chemical Engineering Journal, 2019, 369(18-25).
[88]FENG Z, REN Q, PENG R, et al. Effect of CeO2 morphologies on toluene catalytic combustion [J]. Catalysis Today, 2019, 332(177-82).
[89]CHEN P, RIZZOTTO V, KHETAN A, et al. Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH 3 -SCR Monitoring: The Role of Cu Mobility [J]. ACS Applied Materials and Interfaces, 2019, 11(8): 8097-105.
[90]CHEN B, WANG B, SUN Y, et al. Plasma-assisted surface interactions of Pt/CeO2 catalyst for enhanced toluene catalytic oxidation [J]. Catalysts, 2019, 9(1):
[91]ZHANG W, HUANG C, KE Y, et al. Preparation of Phanerochaete chrysosporium modified micro-meso hierarchical porous carbon and its adsorption performance for toluene [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2018, 38(10): 3917-26.
[92]ZHANG Q, MO S, CHEN B, et al. Hierarchical Co3O4 nanostructures in-situ grown on 3D nickel foam towards toluene oxidation [J]. Molecular Catalysis, 2018, 454(12-20).
[93]ZHANG J N, CHEN X F, LIANG X M, et al. Scenario Analyses of the Volatile Organic Compound Emission Allowance and Allocation in the 13th Five-Year Period [J]. Huanjing Kexue/Environmental Science, 2018, 39(8): 3544-51.
[94]ZHANG J, XIAO J, CHEN X, et al. Allowance and allocation of industrial volatile organic compounds emission in China for year 2020 and 2030 [J]. Journal of Environmental Sciences (China), 2018, 69(155-65).
[95]YU L, WANG L, XU W, et al. Adsorption of VOCs on reduced graphene oxide [J]. Journal of Environmental Sciences (China), 2018, 67(171-8).
[96]YU L, WANG L, SUN X, et al. Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation [J]. Journal of Environmental Sciences (China), 2018, 73(138-46).
[97]YU L, PENG R, CHEN L, et al. Ag supported on CeO2 with different morphologies for the catalytic oxidation of HCHO [J]. Chemical Engineering Journal, 2018, 334(2480-7).
[98]XIAO H, WU J, WANG X, et al. Ozone-enhanced deep catalytic oxidation of toluene over a platinum-ceria-supported BEA zeolite catalyst [J]. Molecular Catalysis, 2018, 460(7-15).
[99]WANG K, FU M, WU J, et al. Computer simulation studies of structure characteristics of ordered mesoporous carbons and its naphthalene adsorption performance [J]. Aerosol and Air Quality Research, 2018, 18(2): 542-8.
[100] WANG B, XU X, XU W, et al. The Mechanism of Non-thermal Plasma Catalysis on Volatile Organic Compounds Removal [J]. Catalysis Surveys from Asia, 2018, 22(2): 73-94.
[101] WANG B, CHEN B, SUN Y, et al. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts [J]. Applied Catalysis B: Environmental, 2018, 238(328-38).
[102] SUN Y, CHEN L, BAO Y, et al. Roles of nitrogen species on nitrogen-doped CNTs supported Cu-ZrO2 system for carbon dioxide hydrogenation to methanol [J]. Catalysis Today, 2018, 307(212-23).
[103] SUN X B, LIAO C H, ZENG W T, et al. Emission Inventory of Atmospheric Pollutants and VOC Species from Crop Residue Burning in Guangdong Province [J]. Huanjing Kexue/Environmental Science, 2018, 39(9): 3995-4001.
[104] SHI T L, ZHANG W X, CHEN X F, et al. Stench Sources and Impact Analysis in Automobile Making [J]. Huanjing Kexue/Environmental Science, 2018, 39(2): 557-66.
[105] REN Q, MO S, PENG R, et al. Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene [J]. Journal of Materials Chemistry A, 2018, 6(2): 498-509.
[106] PENG R, LI S, SUN X, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts [J]. Applied Catalysis B: Environmental, 2018, 220(462-70).
[107] MO S, ZHANG Q, LI S, et al. Integrated Cobalt Oxide Based Nanoarray Catalysts with Hierarchical Architectures: In Situ Raman Spectroscopy Investigation on the Carbon Monoxide Reaction Mechanism [J]. ChemCatChem, 2018, 10(14): 3012-26.
[108] MO S, LI S, XIAO H, et al. Low-temperature CO oxidation over integrated penthorum chinense-like MnCo2O4 arrays anchored on three-dimensional Ni foam with enhanced moisture resistance [J]. Catalysis Science and Technology, 2018, 8(6): 1663-76.
[109] MO S, LI S, REN Q, et al. Vertically-aligned Co3O4 arrays on Ni foam as monolithic structured catalysts for CO oxidation: Effects of morphological transformation [J]. Nanoscale, 2018, 10(16): 7746-58.
[110] LIN X, LI S, HE H, et al. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation [J]. Applied Catalysis B: Environmental, 2018, 223(91-102.
[111] LIN X, FU M, HE H, et al. Synthesis of MnOx-CeO2 using metal-organic framework as sacrificial template and its performance in the toluene catalytic oxidation reaction [J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34(6): 719-30.
[112] LI S, PENG R, SUN X, et al. Mechanism research of toluene catalytic oxidation over Pt/CeO 2 catalyst [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2018, 38(4): 1426-36.
[113] HE H, LIN X, LI S, et al. The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation [J]. Applied Catalysis B: Environmental, 2018, 223(134-42).
[114] CHEN X F, ZHANG W X, CHEN B X, et al. Emission Inventory of Anthropogenic VOCs in Jiangmen City [J]. Huanjing Kexue/Environmental Science, 2018, 39(2): 600-7.
[115] BAO Y, HUANG C, CHEN L, et al. Highly efficient Cu/anatase TiO2 {001}-nanosheets catalysts for methanol synthesis from CO2 [J]. Journal of Energy Chemistry, 2018, 27(2): 381-8.
[116] YAO M, WU P, CHENG S, et al. Investigation into the energy storage behaviour of layered α-V2O5 as a pseudo-capacitive electrode using operando Raman spectroscopy and a quartz crystal microbalance [J]. Physical Chemistry Chemical Physics, 2017, 19(36): 24689-95.
[117] XU X, WU J, XU W, et al. High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal [J]. Catalysis Today, 2017, 281(527-33).
[118] WU Z, LIN X, HE H, et al. Evolution of key surface species on MnOx-CeO2 in pulse dielectric barrier discharge towards soot oxidation [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2017, 37(3): 863-70.
[119] WANG N, XU W, XIAO H, et al. Effects of Si/Al ratio and NiO on the interaction of non-thermal plasma and ZSM-5 catalysts [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2017, 37(5): 1884-93.
[120] SUN X, PENG R, LI S, et al. Effect of Pt particle size on Pt/CeO2 catalyst for toluene catalytic oxidation [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2017, 37(4): 1297-306.
[121] LU M, HUANG R, XU W, et al. Competitive adsorption of O2 and toluene on the surface of FeOx/SBA-15 catalyst [J]. Aerosol and Air Quality Research, 2017, 17(9): 2310-6.
[122] LIAO Y, ZHANG X, PENG R, et al. Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal [J]. Applied Surface Science, 2017, 405(20-8).
[123] LIAO Y, HE L, ZHAO M, et al. Ultrasonic-assisted hydrothermal synthesis of ceria nanorods and their catalytic properties for toluene oxidation [J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 5054-60.
[124] LIANG X M, ZHANG J N, CHEN X F, et al. Reactivity-based Anthropogenic VOCs Emission Inventory in China [J]. Huanjing Kexue/Environmental Science, 2017, 38(3): 845-54.
[125] LIANG X, CHEN X, ZHANG J, et al. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China [J]. Atmospheric Environment, 2017, 162(115-26).
[126] HE M L, XIAO H L, CHEN X F, et al. Emission characteristics of volatile organic compounds in chemical industry park based on emission links [J]. Zhongguo Huanjing Kexue/China Environmental Science, 2017, 37(1): 38-48.
[127] CHEN Y, WANG N, CHEN J, et al. Removal of toluene by non-thermal plasma combined with HZSM-5 zeolite: Effect of pore size [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2017, 37(2): 503-11.
[128] CHEN X F, ZHANG J N, ZHANG W X, et al. VOCs emission inventory of a chemical industry park and its influence on atmospheric environment [J]. Zhongguo Huanjing Kexue/China Environmental Science, 2017, 37(11): 4062-71.
[129] CHEN J, XU W, WU J, et al. Synthesis of metal-organic framework ZIF-8/polydivinylbenzene nanohybrid composite and its adsorption property of VOCs [J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2017, 37(5): 1877-83.
[1]张楚馨,陈建东,吴军良,叶代启. 一种载体改性的银基乙烯脱除剂及其制备方法和应用[P]. 广东省:CN113441171A,2021-09-28.
[2]王小红,黄皓旻,成海荣,叶光政,焦裕均,朱文富,姚帆,王钰钦,叶代启. 一种利用天然有机酸疏水改性生物炭及其制备方法与应用[P]. 广东省:CN113426408A,2021-09-24.
[3]丘勇才,赵帅奇,靳小静,邬鹏,叶代启. 一种Co-3O-4/CuO高效光热催化剂及其制备方法与应用[P]. 广东省:CN110152670B,2021-09-21.
[4]陈龙文,叶代启,黄皓旻. 室内颗粒污染物收集净化装置及其方法[P]. 广东省:CN111530629B,2021-09-21.
[5]吴曾,陈建东,吴军良,叶代启. 一种油气回收活性炭吸附材料的脱附装置和脱附方法[P]. 广东省:CN113351192A,2021-09-07.
[6]吴曾,陈建东,吴军良,叶代启. 一种适合高温脱附的活性炭材料及其制备方法[P]. 广东省:CN113353933A,2021-09-07.
[7]胡芸,曾译葵,王煌彬,钟金平,叶代启,付名利. 一种全太阳光谱响应的Co-3O-4/rGO复合催化剂及其制备方法与光热催化应用[P]. 广东省:CN110756189B,2021-08-10.
[8]梁小明,叶代启,付名利,孙西勃,陈来国,梁明易. 基于排放源项的石油化工行业挥发性有机物源成分谱的建立方法[P]. 广东省:CN113156055A,2021-07-23.
[9]叶代启,钟金平,曾译葵,付名利,吴军良. 一种四氧化三钴纳米管催化剂及其制备方法与应用[P]. 广东省:CN110756190B,2021-07-20.
[10]叶代启,熊菊霞,宋凌河. 一种四氧化三钴原位包覆二氧化硅介孔球表面负载贵金属催化剂及其制备方法与应用[P]. 广东省:CN111036236B,2021-07-20.
[11]钟金平,叶代启,曾译葵,付名利,吴军良,黄皓旻. 一种以金属有机框架为前驱体配体可回收制备不同形貌四氧化三钴的方法与应用[P]. 广东省:CN111744521B,2021-07-20.
[12]付名利,甘琪,张宇辰,丘楚莹,刘磊,吴军良,叶代启. 一种共载体催化臭氧氧化催化剂及其制备方法与应用[P]. 广东省:CN113101919A,2021-07-13.
[13]付名利,甘琪,陈雨佳,舒诚,刘磊,吴军良,叶代启. 一种催化臭氧氧化催化剂及制备与在催化臭氧氧化VOCs中的应用[P]. 广东省:CN113101920A,2021-07-13.
[14]黄皓旻,王小红,殷璐,成海荣,叶光政,王钰钦,焦裕均,姚帆,朱文富,叶代启. 基于超临界CO-2介质的有机酸疏水改性生物炭及其制备方法与应用[P]. 广东省:CN112934185A,2021-06-11.
[15]王小红,黄皓旻,叶光政,成海荣,朱文富,姚帆,王钰钦,焦裕均,叶代启. 基于超临界CO-2介质的天然有机酸疏水改性碱性羟基化生物炭及其制备方法与应用[P]. 广东省:CN112791698A,2021-05-14.
[16]叶代启,王小红,成海荣,叶光政,姚帆,王钰钦,焦裕均,朱文富,黄皓旻. 一种利用天然有机酸改性碱性羟基化生物炭及其制备方法与应用[P]. 广东省:CN112774627A,2021-05-11.
[17]陈培榕,熊梧琬,刘林辉,付名利,叶代启. 一种循环利用母液水热合成SSZ-13分子筛的方法[P]. 广东省:CN112777607A,2021-05-11.
[18]胡芸,肖高飞,李剑晗,郭梓洋,叶代启. 一种用于协同去除燃煤烟气中有机废气和NOx的改性整体式催化剂及其制备方法与应用[P]. 广东省:CN112755991A,2021-05-07.
[19]付名利,何文宇,李艳霞,叶代启,牛晓君,胡芸,吕明慧. 一种疏水改性ZSM-5分子筛及其制备方法与应用[P]. 广东省:CN112390270A,2021-02-23.
[20]付名利,高景恒,贺辉,吴军良,叶代启,胡芸. 一种用于液体原料投料及混合系统的集气装置[P]. 广东省:CN108499481B,2021-02-19.
[21]丘勇才,邬鹏,靳小静,赵帅奇,叶代启,陈覃,刘茂胜. 一种K掺杂α-MnO-2/Mn-3O-4高效光热催化剂及制备方法与应用[P]. 广东省:CN110102290B,2021-02-12.
[22]朱国瑜,付名利,叶代启. 一种氢能汽车的工况实时监控方法及系统[P]. 广东省:CN111928908B,2021-01-01.
[23]丘勇才,邬鹏,靳小静,赵帅奇,叶代启,陈礼敏,刘茂盛,陈光需,向君毅. 一种蛋黄-壳结构锰钾矿型二氧化锰催化剂及其制备方法与应用[P]. 广东省:CN109482175B,2020-12-22.
[24]陈培榕,熊梧琬,付名利,叶代启. 一种一锅法制备的小孔分子筛负载贵金属材料的制备方法及其应用[P]. 广东省:CN111974444A,2020-11-24.
[25]陈培榕,陈冬冬,付名利,叶代启. 一种低温去除柴油车尾气氮氧化物的小孔分子筛负载双金属材料及其制备方法与应用[P]. 广东省:CN111957342A,2020-11-20.
[26]朱国瑜,付名利,叶代启. 一种氢能汽车的工况实时监控方法及系统[P]. 广东省:CN111928908A,2020-11-13.
[27]叶代启,宋岭河,熊菊霞,黄皓旻. 一种连续工作的旋转式漆雾过滤装置[P]. 广东省:CN111905458A,2020-11-10.
[28]叶代启,吴曾,杨森林,肖海麟,吴军良,付名利. 一种有机废气吸附剂真空脱附方法和装置[P]. 广东省:CN110813019B,2020-11-10.
[29]黄皓旻,成海荣,王小红,叶光政,叶代启. 一种精确调节生物质基活性炭微孔结构的制备方法及制得的生物质基活性炭[P]. 广东省:CN111874903A,2020-11-03.
[30]付名利,甘琪,贺辉,吴军良,叶代启. 一种用于净化挥发性有机物的催化剂及其制备方法[P]. 广东省:CN107335447B,2020-10-27.
[31]钟金平,叶代启,曾译葵,付名利,吴军良,黄皓旻. 一种以金属有机框架为前驱体配体可回收制备不同形貌四氧化三钴的方法与应用[P]. 广东省:CN111744521A,2020-10-09.
[32]陈礼敏,鲍云锋,张玉东,梁珑,叶代启. 用于二氧化碳加氢合成甲醇的Cu/二氧化钛纳米片催化剂及其制备方法[P]. 广东省:CN107952437B,2020-09-22.
[33]叶代启,石杰,胡芸,付名利,刘荣才,黄皓旻,蔡辉东,闫志强. 一种常温下快速成膜的超疏水SiO_2涂料及其制备方法和应用[P]. 广东省:CN111574861A,2020-08-25.
[34]陈龙文,叶代启,黄皓旻. 室内颗粒污染物收集净化装置及其方法[P]. 广东省:CN111530629A,2020-08-14.
[35]胡芸,肖高飞,杜玥莹,张益兰,郭梓洋,李剑晗,程源璟,熊涛,叶代启,付名利. 一种用于净化燃煤烟气中有机废气的贵金属复合钒钛催化剂及其制备方法与应用[P]. 广东省:CN111420660A,2020-07-17.
[36]叶代启,熊菊霞,宋凌河. 一种以太阳能做能源的负压式等离子消解臭气湿垃圾暂存箱[P]. 广东省:CN111217056A,2020-06-02.
[37]朱志华,叶代启. 一种碳负载的纳米零价铁材料及其制备方法与应用[P]. 广东省:CN111112638A,2020-05-08.
[38]叶代启,熊菊霞,宋凌河. 一种四氧化三钴原位包覆二氧化硅介孔球表面负载贵金属催化剂及其制备方法与应用[P]. 广东省:CN111036236A,2020-04-21.
[39]付名利,甘琪,许子飏,胡芸,牛晓君,叶代启. 一种臭氧催化氧化催化剂及其去除湿冷条件下VOCs的应用[P]. 广东省:CN111001403A,2020-04-14.
[40]叶代启,吴曾,杨森林,肖海麟,吴军良,付名利. 一种有机废气吸附剂真空脱附方法和装置[P]. 广东省:CN110813019A,2020-02-21.
[41]胡芸,肖高飞,李剑晗,覃俊贤,袁乐,区卓霏,叶代启,付名利. 一种用于净化燃煤有机废气的贵金属复合催化剂及其制备方法与应用[P]. 广东省:CN110773154A,2020-02-11.
[42]叶代启,钟金平,曾译葵,付名利,吴军良. 一种四氧化三钴纳米管催化剂及其制备方法与应用[P]. 广东省:CN110756190A,2020-02-07.
[43]钟金平,叶代启,曾译葵,付名利,吴军良. 一种以金属有机框架为牺牲模板整体式催化剂及其制备与应用[P]. 广东省:CN110694629A,2020-01-17.
[44]胡芸,李剑晗,肖高飞,叶代启,付名利,张益兰,杜玥莹,刘雨奇. 一种用于净化高硫燃煤烟气中挥发性有机物的钛基复合催化剂及其制备方法与应用[P]. 广东省:CN110665511A,2020-01-10.
[45]李艳霞,付名利,牛晓君,胡芸,叶代启. 一种用于吸附有机物疏水改性活性炭及其制备方法与应用[P]. 广东省:CN110523383A,2019-12-03.
[46]付名利,贺辉,叶代启,朱雪晴,吴军良,林雪婷,胡芸. 一种固定有纳米铂的金属有机骨架材料的制备纯化方法及其应用[P]. 广东省:CN108554454B,2019-11-15.
[47]曹珍珠,叶代启. 一种疏水材料动态包覆活性炭的制备方法[P]. 广东省:CN110354807A,2019-10-22.
[48]叶代启,熊菊霞,宋岭河. 一种具有高比表面积花状型氮掺杂碳-尖晶石型微球催化剂及其制备方法与应用[P]. 广东省:CN110280290A,2019-09-27.
[49]甘琪,付名利,许子飏,刘浔,陈川,胡芸,叶代启. 一种低能耗臭氧催化氧化装置[P]. 广东省:CN110237707A,2019-09-17.
[50]安康,李艳霞,付名利,古勇坤,杨炎锋,刘浔,胡芸,叶代启. 一种活性炭的环保疏水改性方法[P]. 广东省:CN110237822A,2019-09-17.
[51]付名利,贺辉,林雪婷,高景恒,吴军良,叶代启,巫伟杰. 一种可控的循环浓缩喷漆废气处理系统[P]. 广东省:CN107185760B,2019-08-20.
[52]陈礼敏,张宇筠,鞠敏,孙玉海,叶代启. 一种掺杂了过渡金属或稀土金属的盘状氧化锌的可控合成方法[P]. 广东省:CN106215942B,2019-06-18.
[53]陈礼敏,张玉冬,刘睿涵,鲍云峰,梁珑,陈子扬,钟雯,叶代启. 一种铜-铈氧化物-二氧化钛纳米片催化剂及其制备与应用[P]. 广东省:CN109806878A,2019-05-28.
[54]叶代启,陈建东,付名利,曹珍珠,刘汉高,吴军良. 一种聚二乙烯基苯成型体及其制备方法和应用[P]. 广东省:CN109745957A,2019-05-14.
[55]付名利,李艳霞,张茜,朱雪晴,叶代启,刘浔. 一种具有稳定废气流向的催化燃烧系统[P]. 广东省:CN109724094A,2019-05-07.
[56]黄皓旻,张伟霞,成海荣,叶代启. 利用真菌预处理制备高比表面积多孔炭材料及方法与应用[P]. 广东省:CN109574007A,2019-04-05.
[57]陈建东,张楚馨,曹珍珠,叶代启,吴军良,付名利. 一种用于吸附挥发性有机化合物的复合材料的制备方法[P]. 广东省:CN109482157A,2019-03-19.
[58]丘勇才,邬鹏,靳小静,赵帅奇,叶代启,陈礼敏,刘茂盛,陈光需,向君毅. 一种蛋黄-壳结构锰钾矿型二氧化锰催化剂及其制备方法与应用[P]. 广东省:CN109482175A,2019-03-19.
[59]叶代启,邹思贝,付名利,杨森林,吴曾,肖海麟. 一种用于汽车维修的径流式废气吸附装置[P]. 广东省:CN208553624U,2019-03-01.
[60]叶代启,陈建东,吴曾,付名利,吴军良. 一种金属有机框架/聚二乙烯基苯复合VOCs吸附剂的制备方法[P]. 广东省:CN106345435B,2019-01-18.
[61]吴军良,邓毅强,马亮宇,王佳玲,叶代启,付名利. 一种用于有机废气净化的充气型蝶阀装置[P]. 广东:CN208010980U,2018-10-26.
[62]甘琪,付名利,安康,邓郁蓉,吴军良,叶代启. 一种模块化的可移动式吸附装置[P]. 广东:CN108636056A,2018-10-12.
[63]付名利,贺辉,叶代启,朱雪晴,吴军良,林雪婷,胡芸. 一种固定有纳米铂的金属有机骨架材料的制备纯化方法及其应用[P]. 广东:CN108554454A,2018-09-21.
[64]付名利,高景恒,贺辉,吴军良,叶代启,胡芸. 一种用于液体原料投料及混合系统的集气装置[P]. 广东:CN108499481A,2018-09-07.
[65]叶代启,邹思贝,付名利,杨森林,吴曾,肖海麟. 一种用于汽车维修的径流式废气吸附装置[P]. 广东:CN108479302A,2018-09-04.
[66]吴军良,邓毅强,马亮宇,王佳玲,叶代启,付名利. 一种用于有机废气净化的充气型蝶阀装置[P]. 广东:CN108458136A,2018-08-28.
[67]黄皓旻,张伟霞,叶代启. 一种木质素降解菌改性荷叶制备多级孔炭的方法及该多级孔炭的应用[P]. 广东:CN108043359A,2018-05-18.
[68]付名利,林雪婷,叶代启,吴军良,贺辉,胡芸. 一种以金属有机骨架为模板的铈基复合氧化物VOCs燃烧催化剂及其制备方法[P]. 广东:CN107983329A,2018-05-04.
[69]陈礼敏,鲍云锋,张玉东,梁珑,叶代启. 用于二氧化碳加氢合成甲醇的Cu/二氧化钛纳米片催化剂及其制备方法[P]. 广东:CN107952437A,2018-04-24.
[70]付名利,林雪婷,贺辉,吴军良,叶代启,周浩彪. 一种生产车间工位有机气体泄漏应急处理装置[P]. 广东:CN107511063A,2017-12-26.
[71]付名利,甘琪,贺辉,吴军良,叶代启. 一种用于净化挥发性有机物的催化剂及其制备方法[P]. 广东:CN107335447A,2017-11-10.
[72]付名利,贺辉,林雪婷,高景恒,吴军良,叶代启,巫伟杰. 一种可控的循环浓缩喷漆废气处理系统[P]. 广东:CN107185760A,2017-09-22.
[73]叶代启,陈建东,吴曾,付名利,吴军良. 一种金属有机框架/聚二乙烯基苯复合VOCs吸附剂的制备方法[P]. 广东:CN106345435A,2017-01-25.