华南理工生物医学信息学实验室

语言: English / 中文






  • HongminCai, Fei Qi, Junyu Li, Yu Hu, Bin Hu, Yue Zhang, Yiu-ming Cheung*; (2024). Uniform Tensor Clustering by Jointly Exploring Sample Affinities of Various Orders.  IEEE Transactions on Neural Networks and Learning Systems

  • Xiaoqi Sheng, Hongmin Cai, Yongwei Nie, Shengfeng He, Yiu-Ming Cheung, Jiazhou Chen*; (2024). Modality-Aware Discriminative Fusion Network for Integrated Analysis of Brain Imaging Genomics.  IEEE Transactions on Neural Networks and Learning Systems

  • Hongmin Cai, Yu Wang, Fei Qi, Zhuoyao Wang, Yiu-ming Cheung*; (2024). Multiview Tensor Spectral Clustering via Co-regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence

  • Hongmin Cai,  Yu Hu, Fei Qi, Bin Hu, and Yiu-ming Cheung*; (2024). Deep Tensor Spectral Clustering Network via Ensemble of Multiple Affinity Tensors. IEEE Transactions on Pattern Analysis and Machine Intelligence





  • Hongmin Cai; Weitian Huang; Sirui Yang; Siqi Ding; Yue Zhang; Bin Hu; Fa Zhang; Yiu-Ming Cheung*; (2023). Realize Generative Yet Complete Latent Representation for Incomplete Multi-View Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence

  • Hongmin Cai, Yi Liao, Lei Zhu, Jiangning Song*; (2023). Improving cancer survival prediction via graph convolutional neural networks learning on protein-protein interaction networks. IEEE Journal of Biomedical and Health Informatics

  • Hongmin Cai,Xiaoqi Sheng,Guorong Wu,Bin Hu,Yiu-Ming Cheung,Jiazhou Chen*; (2023). Brain Network Classification for Accurate Detection of Alzheimer’s Disease via Manifold Harmonic Discriminant Analysis.  IEEE Transactions on Neural Networks and Learning Systems

  • Hongmin Cai*, Jinhua Wang, Tingting Dan, Jiao Li, ZhiHao Fan, Weiting Yi, Chunyan Cui, Xinhua Jiang, Li Li*.; (2023). An Online Mammography Database with Biopsy Confirmed Types.  Scientific Data.

  • Hongmin Cai, Huan Liu, Defu Yang, Guorong Wu, Bin Hu, and Jiazhou Chen*; (2023). Estimating Outlier-Immunized Common Harmonic Waves for Brain Network Analyseson the Stiefel Manifold. IEEE Journal of Biomedical and Health Informatics

  • Y. Hu, E. Guo, Z. Xie, X. Liu, and H. Cai*; (2023). Robust Multi-view Clustering through Partition Integration on Stiefel Manifold. IEEE Transactions on Knowledge and Data Engineering.





  • Tingting Dan, Xijie Chen, Miao He, Hongmei Guo, Xiaoqin He, Jiazhou Chen, Jianbo Xian, Yu Hu, Bin Zhang, Nan Wang, Hongning Xie, Hongmin Cai*; (2022). DeepGA for automatically estimating fetal gestational age through ultrasound imaging. Artificial Intelligence In Medicine.

  • Xiaoqi Sheng, Jiazhou Chen, Hongmin Cai*; (2022).  Deep Manifold Harmonic Network with Dual Attention for Brain Disorder Classification. IEEE Journal of Biomedical and Health Informatics.

  • Jiazhou Chen, Jie Huang, Yi Liao, Lei Zhu, Hongmin Cai ; (2022). Identify Multiple Gene-Drug Common Modules via Constrained Graph Matching.

  • Tingting Dan, Hongmin Cai, Zhuobin Huang, Paul Laurienti, Won Hwa Kim & Guorong Wu ; (2022). Neuro-RDM: An Explainable Neural Network Landscape of Reaction-Diffusion Model for Cognitive Task Recognition.

  • Jiazhou Chen, Guoqiang Han, Aodan Xu, Tatsuya Akutsu, Hongmin Cai ; (2022). Identifying miRNA-gene common and specific regulatory modules for cancer subtyping by a high-order graph matching model.

  • Jiazhou Chen, Hongmin Cai, Defu Yang, Martin Styner, Guorong Wu ; (2022). Characterizing the propagation pathway of neuropathological events of Alzheimer's disease using harmonic wavelet analysis

  • Yu Hu, Hongmin Cai  ; (2022). Multi-View Clustering Through Hypergraphs Integration on Stiefel Manifold

  • Dandan Lu, Ming Li, Yi Liao, Guihua Tao, and Hongmin Cai. ;  (2022). Verifiable Privacy-preserving Queries on Multi-source Dynamic DNA Datasets. IEEE Transactions on Cloud Computing.

  • Tingting Dan, Zhuobin Huang, Hongmin Cai, Paul J. Laurienti, Guorong Wu. ;  (2022). Learning Brain Dynamics of Evolving Manifold Data Instances Using Geometric-Attention Neural Network. IEEE Transaction on Medical Imaging.

  • Junyu Li, Jiazhou Chen, Fei Qi, Tingting Dan, Wanlin Weng, Bin Zhang, Haoliang Yuan, Hongmin Cai, Cheng Zhong. ; (2022). Two-Dimensional Unsupervised Feature Selection via Sparse Feature Filter. IEEE Transactions on Cybernetics.

  • Tao G, Li H, Huang J, Han C, Chen J, Ruan G, Huang W, Hu Y, Dan, T, Zhang B, He S, Cai H. ;  (2022). SeqSeg: A Sequential Method to Achieve Nasopharyngeal Carcinoma Segmentation Free from Background Dominance. Medical Image Analysis.

  • Yang Li, Tingting Dan, Haojiang Li, Jiazhou Chen, Hong Peng, Lizhi Liu, Hongmin Cai. ; (2022). NPCNet: Jointly Segment Primary Nasopharyngeal Carcinoma Tumors and Metastatic Lymph Nodes in MR Images. IEEE Transactions on Medical Imaging.





  • H. Peng, H. Wang, B. Zhang, Y. Hu, W. Zhou, & H. Cai. (2021). Multi-dimensional Clustering through Fusion of High-order Similarities. Pattern Recognition.

  • T. Dan, Y. Hu, C. Han, Z. Fan, Z. Huang, B. Zhang, G. Tao, B. Liu, H. Yu, & H. Cai. (2021). Fusion of multi-source retinal fundus images via automatic registration for clinical diagnosis. Neurocomputing.

  • Y. Zhang, Q. Huang, S. He, B. Zhang, T. Dan, H. Peng, & H. Cai. (2021). Deep Multi-view Clustering via Iteratively Self-supervised Universal and Specific Space Learning. IEEE transactions on cybernetics.

  • D. Lu, Y. Zhang, L. Zhang, H. Wang, W. Weng, L. Li, &  H. Cai. (2021). Methods of privacy-preserving genomic sequencing data alignments. Briefings in Bioinformatics, 2021.

  • H. Wang, G. Han, J. Li, B. Zhang, J. Chen, Y. Hu, C. Han, & H. Cai. (2021). Learning Task-driving Affinity Matrix for Accurate Multi-view Clustering through Tensor Subspace Learning. Information Sciences.




  • Peng, H., Chen, J., Wang, H., Hu, Y., & Cai H. (2020). Integrating Tensor Similarity to Enhance Clustering Performance. IEEE Transactions on Pattern Analysis and Machine Intelligence.

  • Rong, W., Zhuo, E., Peng, H., Chen, J., Wang, H., Han, C., & Cai H. (2020). Learning a consensus affinity matrix for multi-view clustering via subspaces merging on Grassmann manifold. Information Sciences.

  • Wang, H., Han, G., Zhang, B., Tao, G., & Cai H. (2020). Exsavi: Excavating Both Sample-wise and View-wise Relationships to Boost Multi-view Subspace Clustering. Neurocomputing.

  • Wang, H., Han, G., Li, H., Tao, G., Zhuo, E., Liu, L., Cai H. & Ou, Y. (2020). A Collaborative Dictionary Learning Model for Nasopharyngeal Carcinoma Segmentation on Multimodalities MR Sequences. Computational and Mathematical Methods in Medicine, 2020.

  • Yang, J., Dong, X., Hu, Y., Peng, Q., Tao, G., Ou, Y., Cai H.. & Yang, X. (2020). Fully Automatic Arteriovenous Segmentation in Retinal Images via Topology-Aware Generative Adversarial Networks. Interdisciplinary Sciences: Computational Life Sciences, 1-12.

  • Huang, Q., Zhang, Y., Peng, H., Dan, T., Weng, W., & Cai H. (2020). Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning. Neurocomputing, 404, 340-350.

  • Chen, X., He, M., Dan, T., Wang, N., Lin, M., Zhang, L., Cai H. & Xie, H. (2020). Automatic Measurements of Fetal Lateral Ventricles in 2D Ultrasound Images Using Deep Learning. Frontiers in neurology, 11, 526.

  • Wei, Z., Zhang, Y., Weng, W., Chen, J., & Cai H. (2020). Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets. Briefings in Bioinformatics.

  • Huang, J., Chen, J., Zhang, B., Zhu, L., & Cai H (2020). Evaluation of gene–drug common module identification methods using pharmacogenomics data. Briefings in Bioinformatics.
  • Xie, B., Lei, T., Wang, N., Cai H., Xian, J., He, M., ... & Xie, H. (2020). Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks. International Journal of Computer Assisted Radiology and Surgery.
  • Xie, H., Wang, N., He, M., Zhang, L.,Cai H., Xian, J., ... & Yang, Y. (2020). Using deep learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound in Obstetrics & Gynecology.
  • Chen, J., Han, G., Cai H., Yang, D., Laurienti, P. J., Styner, M., ... & ADNI, A. S. D. N. I. (2020). Learning Common Harmonic Waves on Stiefel Manifold--A New Mathematical Approach for Brain Network Analyses. arXiv preprint arXiv:2007.13533.
  • Zeng, J., Cai H., Peng, H., Wang, H., Zhang, Y., & Akutsu, T. (2020). Causalcall: Nanopore basecalling using a temporal convolutional network. Frontiers in Genetics, 10, 1332.
  • Zeng, J.,Cai H., & Akutsu, T. (2020, January). Breast Cancer Subtype by Imbalanced Omics Data through A Deep Learning Fusion Model. In Proceedings of the 2020 10th International Conference on Bioscience, Biochemistry and Bioinformatics (pp. 78-83).
  • Weng, W., Zhou, W., Chen, J., Peng, H., &Cai, H. (2020). Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures. Neurocomputing, 378, 375-386.





  • Li, Z., Zhang, Z., Qin, J., Li, S., & Cai, H. (2019). Low-rank analysis–synthesis dictionary learning with adaptively ordinal locality. Neural Networks, 119, 93-112.

  • Huang, J. B., Zhuo, E., Li, H., Liu, L., Cai, H.., & Ou, Y. (2019, October). Achieving Accurate Segmentation of Nasopharyngeal Carcinoma in MR Images Through Recurrent Attention. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 494-502). Springer, Cham.

  • Chen, J., Han, G., Xu, A., & Cai, H. (2019). Identification of Multidimensional Regulatory Modules through Multi-graph Matching with Network Constraints.IEEE Transactions on Biomedical Engineering.

  • Peng, H., Chen, J., Wang, H., Hu, Y., & Cai, H. (2019). Integrating Tensor Similarity to Enhance Clustering Performance.arXiv preprint arXiv:1905.03920.

  • Zhuo, E. H., Zhang, W. J., Li, H. J., Zhang, G. Y., Jing, B. Z., Zhou, J., ... &Cai, H. M. (2019). Radiomics on multi-modalities MR sequences can subtype patients with non-metastatic nasopharyngeal carcinoma (NPC) into distinct survival subgroups.European radiology, 1-10.

  • Cai, H., Pang, X., Dong, D., Ma, Y., Huang, Y., Fan, X., ... & Liu, S. (2019). Molecular Decision Tree Algorithms Predict Individual Recurrence Pattern for Locally Advanced Nasopharyngeal Carcinoma.Journal of Cancer,10(15), 3323.

  • Xu, A., Chen, J., Peng, H., Han, G., & Cai, H. (2019). Simultaneous interrogation of cancer omics to identify subtypes with significant clinical differences.Frontiers in genetics,10, 236.

  • Cai, H., Huang, Q., Rong, W., Song, Y., Li, J., Wang, J., ... & Li, L. (2019). Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms.Computational and mathematical methods in medicine,2019.




  • You, Y., Cai, H., & Chen, J. (2018). Low rank representation and its application in bioinformatics.Current Bioinformatics,13(5), 508-517.
  • Yang, X., Han, G., Chen, J., & Cai, H. (2018). Finding Correlated Patterns via High-Order Matching for Multiple Sourced Biological Data.IEEE Transactions on Biomedical Engineering,66(4), 1017-1025.
  • Jiang, X., Xie, F., Liu, L., Peng, Y., Cai, H., & Li, L. (2018). Discrimination of malignant and benign breast masses using automatic segmentation and features extracted from dynamic contrast-enhanced and diffusion-weighted MRI.Oncology letters,16(2), 1521-1528.
  • Chen, J., Peng, H., Han, G., Cai, H., & Cai, J. (2018). HOGMMNC: a higher order graph matching with multiple network constraints model for gene–drug regulatory modules identification.Bioinformatics,35(4), 602-610.
  • Cai, J., Cai, H., Chen, J., & Yang, X. (2018). Identifying “Many-to-Many” Relationships Between Gene-Expression Data and Drug-Response Data Via Sparse Binary Matching.IEEE/ACM transactions on computational biology and bioinformatics.



  • Huang, J., Zhou, Y., Xu, A., Zhuo, E., Jin, X., & Cai, H. (2017, November). A copy-number variation detection pipeline for single cell sequencing data on BGI online. In2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)(pp. 243-246). IEEE.
  • Cai, H., Chen, P., Chen, J., Cai, J., Song, Y., & Han, G. (2017). Wavedec: a wavelet approach to identify both shared and individual patterns of copy-number variations.IEEE Transactions on Biomedical Engineering,65(2), 353-364.
  • Wei, Z., Shu, C., Zhang, C., Huang, J., & Cai, H. (2017). A short review of variants calling for single-cell-sequencing data with applications.The international journal of biochemistry & cell biology,92, 218-226.
  • Yang, X., Han, G., Cai, H., & Song, Y. (2017). Recovering hidden diagonal structures via non-negative matrix factorization with multiple constraints.IEEE/ACM transactions on computational biology and bioinformatics.
  • Jiang, X., Xie, F., Liu, L. Z., Peng, Y. X., Cai, H. M., & Li, L. (2017, March). Discrimination of malignant and benign breast masses using automatic segmentation and region of interest-based features extracted from MRI. European Congress of Radiology 2017.



  • Zhang, C., Cai, H., Huang, J., & Xu, B. (2016, December). Multi-norm constrained optimization methods for calling copy number variants in single cell sequencing data. In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 156-160). IEEE.
  • Xu, B., Cai, H., Zhang, C., Yang, X., & Han, G. (2016). Copy number variants calling for single cell sequencing data by multi-constrained optimization. Computational biology and chemistry, 63, 15-20.
  • Zhang, C., Cai, H., Huang, J., & Xu, B. (2016, December). Multi-norm constrained optimization methods for calling copy number variants in single cell sequencing data. In2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)(pp. 156-160). IEEE.
  • Zhang, C., Cai, H., Huang, J., & Song, Y. (2016). nbCNV: a multi-constrained optimization model for discovering copy number variants in single-cell sequencing data.BMC bioinformatics,17(1), 384.
  • Huang, W., Cai, H., Shao, W., Xu, B., & Li, F. (2016, August). MDAGenera: An Efficient and Accurate Simulator for Multiple Displacement Amplification. InInternational Conference on Intelligent Computing(pp. 258-267). Springer, Cham.
  • Xu, B., Cai, H., Zhang, C., Yang, X., & Han, G. (2016). Copy number variants calling for single cell sequencing data by multi-constrained optimization.Computational biology and chemistry,63, 15-20.
  • Wang, J., Yang, X., Cai, H., Tan, W., Jin, C., & Li, L. (2016). Discrimination of breast cancer with microcalcifications on mammography by deep learning.Scientific reports,6, 27327.
  • Jiang, R., You, R., Pei, X. Q., Zou, X., Zhang, M. X., Wang, T. M., ... & Hua, Y. J. (2016). Development of a ten-signature classifier using a support vector machine integrated approach to subdivide the M1 stage into M1a and M1b stages of nasopharyngeal carcinoma with synchronous metastases to better predict patients' survival.Oncotarget,7(3), 3645.




  • Cheng, X., Cai, H., Zhang, Y., Xu, B., & Su, W. (2015). Optimal combination of feature selection and classification via local hyperplane based learning strategy.BMC bioinformatics,16(1), 219.
  • Li, T., Zhang, C., Xu, B., Cai, H., & Li, F. (2015, November). MALBACsim: A Multiple Annealing and Looping Based Amplification Cycles simulator. In2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)(pp. 97-100). IEEE.
  • Chen, P., Huang, W., Shao, W., & Cai, H. (2015, September). Discrimination of recurrent CNVs from individual ones from multisample aCGH by jointly constrained minimization. InProceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics(pp. 186-193). ACM.




  • Cai, H., Liu, L., Peng, Y., Wu, Y., & Li, L. (2014). Diagnostic assessment by dynamic contrast-enhanced and diffusion-weighted magnetic resonance in differentiation of breast lesions under different imaging protocols.BMC cancer,14(1), 366.
  • Cai, H., Ruan, P., Ng, M., & Akutsu, T. (2014). Feature weight estimation for gene selection: a local hyperlinear learning approach.BMC bioinformatics,15(1), 70.
  • TIAN, H., Cai, H., & LAI, J. (2014). An Adaptive PM Model Based on Difference Eigenvalue for Image Restoration.Chinese Journal of Electronics,23(4).
  • Tian, H., Cai, H., & Lai, J. (2014). A novel diffusion system for impulse noise removal based on a robust diffusion tensor.Neurocomputing,133, 222-230.
  • Xu, B., Li, T., Luo, Y., Xu, R., & Cai, H. (2014, May). An Empirical Algorithm for Bias Correction Based on GC Estimation for Single Cell Sequencing. InPacific-Asia Conference on Knowledge Discovery and Data Mining(pp. 15-21). Springer, Cham.
  • Cai, H., Peng, Y., Ou, C., Chen, M., & Li, L. (2014). Diagnosis of breast masses from dynamic contrast-enhanced and diffusion-weighted MR: a machine learning approach.PloS one,9(1), e87387.
  • Cai, H., Yang, Z., Cao, X., Xia, W., & Xu, X. (2014). A new iterative triclass thresholding technique in image segmentation.IEEE transactions on image processing,23(3), 1038-1046.




  • Su, W., Wu, H., Li, Y., Zhao, J., Lochovsky, F. H., Cai, H., & Huang, T. (2013). Understanding query interfaces by statistical parsing.ACM Transactions on the Web (TWEB),7(2), 8.
  • Cheng, X., Cai, H., He, P., Zhang, Y., & Tian, R. (2013). Combination of effective machine learning techniques and chemometric analysis for evaluation of Bupleuri Radix through high-performance thin-layer chromatography.Analytical Methods,5(22), 6325-6330.




  • Cai, H., & Ng, M. (2012, November). Optimal Combination of Feature Weight Learning and Classification Based on Local Approximation. InInternational Conference on Data and Knowledge Engineering(pp. 86-94). Springer, Berlin, Heidelberg.
  • Cai, H., & Ng, M. (2012, May). Feature weighting by RELIEF based on local hyperplane approximation. InPacific-Asia Conference on Knowledge Discovery and Data Mining(pp. 335-346). Springer, Berlin, Heidelberg.
  • Fan, X. J., Wan, X. B., Huang, Y., Cai, H. M., Fu, X. H., Yang, Z. L., ... & Wang, L. (2012). Epithelial–mesenchymal transition biomarkers and support vector machine guided model in preoperatively predicting regional lymph node metastasis for rectal cancer.British journal of cancer,106(11), 1735.
  • Wan, X. B., Zhao, Y., Fan, X. J., Cai, H. M., Zhang, Y., Chen, M. Y., ... & Hong, M. H. (2012). Molecular prognostic prediction for locally advanced nasopharyngeal carcinoma by support vector machine integrated approach.PloS one,7(3), e31989.
  • Cai, H., Cui, C., Tian, H., Zhang, M., & Li, L. (2012). A novel approach to segment and classify regional lymph nodes on computed tomography images.Computational and mathematical methods in medicine,2012.
  • Cui, C., Cai, H., Liu, L., Li, L., Tian, H., & Li, L. (2011). Quantitative analysis and prediction of regional lymph node status in rectal cancer based on computed tomography imaging.European radiology,21(11), 2318-2325.
  • Tian, H., Cai, H., Lai, J. H., & Xu, X. (2011, September). Effective image noise removal based on difference eigenvalue. In2011 18th IEEE International Conference on Image Processing(pp. 3357-3360). IEEE.
  • Cai, H. (2011, August). Improvements over adaptive local hyperplane to achieve better classification. InIndustrial Conference on Data Mining(pp. 1-10). Springer, Berlin, Heidelberg.
  • Tian, H., Cai, H., Cui, C., & Li, L. (2011, June). Quality enhancement with adaptive edge preservation for lymph nodal images. InAIP Conference Proceedings(Vol. 1371, No. 1, pp. 341-342). AIP.
  • Tian, H. Y., Cai, H. M., Xu, X., & Lai, J. H. (2011). Improved partial differential equation-based method to remove noise in image enhancement.
  • Cui, C., Cai, H., Liu, L., Li, L., Tian, H., & Li, L. (2011). Quantitative analysis and prediction of regional lymph node status in rectal cancer based on computed tomography imaging.European radiology,21(11), 2318-2325.
  • Tian H,Cai, H., Lai J H, et al. Effective image noise removal based on difference eigenvalue[C]//2011 18th IEEE International Conference on Image Processing. IEEE, 2011: 3357-3360.
  • Cai, H., Xu, X., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. (2008). Using nonlinear diffusion and mean shift to detect and connect cross-sections of axons in 3D optical microscopy images.Medical Image Analysis,12(6), 666-675.
  • Verma, R., Zacharaki, E. I., Ou, Y., Cai, H., Chawla, S., Lee, S. K., ... & Davatzikos, C. (2008). Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images.Academic radiology,15(8), 966-977.
  • Cai, H., Verma, R., Ou, Y., Lee, S. K., Melhem, E. R., & Davatzikos, C. (2007, April). Probabilistic segmentation of brain tumors based on multi-modality magnetic resonance images. In2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro(pp. 600-603). IEEE.
  • Ou, Y., Cai, H., Lee, S. K., Melhem, E. R., Davatzikos, C., & Verma, R. (2007). Cascaded segmentation of brain tumors using multi-modality MR profiles.
  • Zhang, Y., Xu, X., Cai, H., Yung, S. P., & Wong, S. T. (2007). A new nonlinear diffusion method to improve image quality. In2007 IEEE International Conference on Image Processing(Vol. 1, pp. I-329). IEEE.
  • Cai, H., Xu X, Lu J, et al. Use mean shift to track neuronal axons in 3D[C]//2006 IEEE/NLM Life Science Systems and Applications Workshop. IEEE, 2006: 1-2.
  • Cai, H., Xu, X., Lu, J., Lichtman, J. W., Yung, S. P., & Wong, S. T. (2006). Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks.NeuroImage,32(4), 1608-1620.
  • Cai, H., Xu, X., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. (2006, April). Shape-constrained repulsive snake method to segment and track neurons in 3D microscopy images. In3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006.(pp. 538-541). IEEE.
  • Cai, H., Xu, X., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. C. (2005, December). Segment and track neurons in 3D by repulsive snake method. In2005 International Symposium on Intelligent Signal Processing and Communication Systems(pp. 529-532). IEEE.
  • Cheng J, Xu X, Cai, H., et al. New snake algorithm to track neuronal structure in microscopy image[C]//2005 International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, 2005: 537-540.