马千里
博士,教授,博士生导师
- 斯坦福大学与爱思唯尔评选全球前2%顶尖科学家(2023、2024)
- IEEE/ACM TASLP(SCI一区)副主编
电子邮箱:qianlima at scut dot edu dot cn
主页:http://www2.scut.edu.cn/qianlima
办公电话: (+86)20-39380297转3513 办公室:B7-51
邮寄地址:广州大学城华南理工大学计算机科学与工程学院 510006
个人简介
马千里,博士,教授,博士生导师。2008年6月于华南理工大学获得工学博士学位,同年7月留校任教。2016年3月至2017年3月,为美国加州大学(圣地亚哥分校)访问学者。主要从事人工智能、机器学习和数据挖掘等相关领域的研究工作,已发表文章130余篇,其中多项成果发表在NeurIPS、ICML、ICLR、AAAI、IJCAI、ACL、KDD、ICDE、IEEE TPAMI、IEEE TNNLS等国际顶级会议及期刊上,曾获得CIKM 2022 Best Paper Runner-up。2023、2024连续两年入选美国斯坦福大学与爱思唯尔联合推出的《全球前2%顶尖科学家榜单》。主持国家及省部级项目20余项,参与国家及省部级项目10余项,包括国家重点研发计划项目2项,国家自然科学基金重点项目1项,曾获得广东省科技进步奖二等奖,中国南方电网广东电网公司科技进步二等奖,广东省计算机学会优秀论文一等奖,华南理工大学教学优秀奖一等奖。目前担任国际期刊TASLP的副主编、中国人工智能学会机器学习专委会委员,中国人工智能学会知识工程与分布式智能专委会委员,中国计算机学会人工智能与模式识别专委会委员,以及KDD、IJCAI领域主席(Area Chair)的学术兼职。
研究兴趣
专注于人工智能、机器学习和数据挖掘领域的研究,特别是在时间序列数据建模、自然语言处理、大模型优化和序列推荐等方面,重点研究鲁棒性高、安全可信的人工智能模型。同时,在产学研合作中,与国家教育部考试院、南方电网、阿里腾讯、机械制造企业等单位开展了“中高考试题查重”、“大模型智能辅助命题”、“电能数据异常诊断与智能修复”、“短视频公众号内容推荐”以及“智能焊机大模型”等众多场景的应用研究工作。
学术/社会兼职:
IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP)副主编
中国计算机学会(CCF)高级会员,IEEE 会员
中国人工智能学会机器学习专业委员会委员
中国人工智能学会知识工程与分布式智能专业委员会委员
中国计算机学会人工智能与模式识别专业委员会委员
研究成果
代表论文:
Times Series:
*: 通讯作者
31. Zhen Liu, Peitian Ma, Dongliang Chen, Wenbin Pei, Qianli Ma*. Scale-teaching: Robust Multi-scale Training for Times Series Classification with Noisy Labels[C]//Advances in neural information processing systems (NeurlPS), 2023. [paper][code]
30. Siying Zhu, Jiawei Zheng, Qianli Ma*. MR-Transformer: Multiresolution Transformer for Multivariate Time Series Prediction[J]. IEEE Transactions on Neural Networks and Learning Systems(TNNLS), 2023. [paper]
29. Peitian Ma, Zhen Liu, Junhao Zheng, Linhao Wang, Qianli Ma*. CTW: Confident Time-Warping for Time-Series Label-Noise Learning[C]//IJCAI. 2023: 4046-4054.[paper][code]
28. Zhen Liu, Chuxin Chen, Qianli Ma. Category-aware optimal transport for incomplete data classification[J]. Information Sciences, 2023, 634: 443-476. [paper]
27. Zhen Liu, Qianli Ma*, Peitian Ma, Linghao Wang. Temporal-Frequency Co-training for Time Series Semi-supervised Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI), 2023, 37(7): 8923-8931. [paper][code]
26. Huizi Lyu, Desen Huang, Sen Li, Wing W.Y.Ng, Qianli Ma. Multiscale echo self-attention memory network for multivariate time series classification[J]. Neurocomputing, 2023, 520: 60-72. [paper]
25. Desen Huang, Lifeng Shen, Zhongzhong Yu, Zhenjing Zheng, Min Huang, Qianli Ma*. Efficient time series anomaly detection by multiresolution self-supervised discriminative network[J]. Neurocomputing, 2022, 491: 261-272. [paper]
24. Qianli Ma*, Zipeng Chen, Shuai Tian, Wing W.Y.Ng. Difference-guided representation learning network for multivariate time-series classification[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 4717-4727. [paper]
23. Qianli Ma*, Sen Li, Garrison W.Cottrell. Adversarial joint-learning recurrent neural network for incomplete time series classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(4): 1765-1776. [paper]
22. Zipeng Chen, Qianli Ma*, Zhenxi Lin. Time-Aware Multi-Scale RNNs for Time Series Modeling[C]//IJCAI. 2021: 2285-2291. [paper]
21. Qianli Ma*, Zhenjing Zheng, Jiawei Zheng, Sen Li, Wangqing Zhuang, Garrison W. Cottrell. Joint-Label Learning by Dual Augmentation for Time Series Classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI). 2021, 35(10): 8847-8855. [paper]
20. Lifeng Shen, Zhongzhong Yu, Qianli Ma*, James T. Kwok. Time series anomaly detection with multiresolution ensemble decoding[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI). 2021, 35(11): 9567-9575. [paper]
19. Qianli Ma*, Zhenjing Zheng, Wanqing Zhuang, Enhuan Chen, Jia Wei, Jiabing Wang. Echo memory-augmented network for time series classification[J]. Neural Networks, 2021, 133: 177-192. [paper]
18. Qianli Ma*, Sen Li, Garrison W. Cottrell. Adversarial joint-learning recurrent neural network for incomplete time series classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI), 2020, 44(4): 1765-1776. [paper]
17. Qianli Ma*, Zipeng Chen, Shuai Tian, Wing W. Y. Ng. Difference-guided representation learning network for multivariate time-series classification[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 4717-4727. [paper]
16. Qianli Ma*, Sen Li, Wanqing Zhuang, Sen Li, Jiabing Wang, Delu Zeng. Self-supervised time series clustering with model-based dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems(TNNLS), 2020, 32(9): 3942-3955. [paper]
15. Qianli Ma*, Zhenxi Lin, Enhuan Chen, Garrison W. Cottrell. Temporal pyramid recurrent neural network[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI). 2020, 34(04): 5061-5068. [paper]
14. Qianli Ma*, Wanqing Zhuang, Sen Li, Desen Huang, Garrison. Adversarial dynamic shapelet networks[C]//Proceedings of the AAAI conference on artificial intelligence(AAAI). 2020, 34(04): 5069-5076. [paper]
13. Qianli Ma*, Jiawei Zheng, Sen Li, Garrison W. Cottrell. Learning representations for time series clustering[J]. Advances in neural information processing systems(NeurlPS), 2019, 32. [paper]
12. Qianli Ma*, Wangqing Zhuang, Garrison W. Cottrell. Triple-shapelet networks for time series classification[C]//2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019: 1246-1251. [paper]
11. Qianli Ma*, Lifeng Shen, Garrison W. Cottrell. DeePr-ESN: A deep projection-encoding echo-state network[J]. Information Sciences, 2020, 511: 152-171. [paper]
10. Qianli Ma*, Shuai Tian, Jia Wei, Wing W. Y. Ng. Attention-based spatio-temporal dependence learning network[J]. Information Sciences, 2019, 503: 92-108.[paper]
9. Qianli Ma*, Enhuan Chen, Zhenxi Lin, Jiangyue Yan, Zhiwen Yu, Wing W. Y. Ng. Convolutional multitimescale echo state network[J]. IEEE Transactions on Cybernetics, 2019, 51(3): 1613-1625.[paper]
8. Qianli Ma*, Wangqing Zhuang, Lifeng Shen, Garrison W. Cottrell. Time series classification with echo memory networks[J]. Neural networks, 2019, 117: 225-239.[paper]
7. Qianli Ma*, Sen Li, Lifeng Shen, Jiabing Wang, Jia wei, Zhiwen Yu, Garrison W. Cottrell. End-to-end incomplete time-series modeling from linear memory of latent variables[J]. IEEE transactions on cybernetics, 2019, 50(12): 4908-4920.[paper]
6. Kejian Shi, Hongyang Qin, Chijun Sima, Sen Li, Lifeng Shen, Qianli Ma*. Dynamic barycenter averaging kernel in RBF networks for time series classification[J]. IEEE Access, 2019, 7: 47564-47576.[paper]
5. Lifeng Shen, Qianli Ma*, Sen Li. End-to-end time series imputation via residual short paths[C]//Asian conference on machine learning(ACML), 2018: 248-263.[paper]
4. Qianli Ma*, Lifeng Shen, Enhuan Chen, Shuai Tian, Jiabing Wang, Garrison W. Cottrell. WALKING WALKing walking: Action Recognition from Action Echoes[C]//IJCAI. 2017: 2457-2463.[paper]
3. Qianli Ma*, Lifeng Shen, Garrison W. Cottrell. Deep-esn: A multiple projection-encoding hierarchical reservoir computing framework[J]. arXiv preprint arXiv:1711.05255, 2017.[paper]
2. Qianli Ma*, Lifeng Shen, Wanqing Zhuang, Jieyu Chen. Decouple Adversarial Capacities with Dual-Reservoir Network[C]//Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14–18, 2017, Proceedings, Part V 24. Springer International Publishing, 2017: 475-483.[paper]
1. Qianli Ma*, Lifeng Shen, Ruishi Su, Jieyu Chen. Two-stage temporal multimodal learning for speaker and speech recognition[C]//Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24. Springer International Publishing, 2017: 64-72.[paper]
Natural Language Processing(NLP):
*: 通讯作者
16. Jinsong Yan, Piji Li, Haibin Chen, Junhao Zheng, Qianli Ma*. Does the Order Matter? A Random Generative Way to Learn Label Hierarchy for Hierarchical Text Classification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing(TASLP), 2023. [paper]
15. Huawen Feng, Zhenxi Lin, Qianli Ma*. Perturbation-Based Self-Supervised Attention for Attention Bias in Text Classification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing(TASLP), 2023, 31: 3139-3151. [paper]
14. Huawen Feng, Junlong Liu, Junhao Zheng, Haibin Chen, Xichen Shang, Qianli Ma*. Joint Constrained Learning with Boundary-adjusting for Emotion-Cause Pair Extraction[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics(ACL), 2023: 1118-1131. [paper]
13. Junhao Zheng, Qianli Ma*, Shengjie Qiu, Yue Wu, Peitian Ma, Junlong Liu, Huawen Feng, Xichen Shang, Haibin Chen. Preserving Commonsense Knowledge from Pre-trained Language Models via Causal Inference[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics(ACL), 2023: 9155-9173 [paper]
12. Xichen Shang, Chuxin Chen, Zipeng Chen, Qianli Ma*. Modularized Mutuality Network for Emotion-Cause Pair Extraction[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing(TASLP), 2022, 31: 539-549. [paper]
11. Junhao Zheng, Haibin Chen, Qianli Ma*. Cross-domain Named Entity Recognition via Graph Matching[C]//Findings of the Association for Computational Linguistics(ACL), 2022. 2022: 2670-2680. [paper]
10. Junlong Liu, Xichen Shang, Qianli Ma*. Pair-Based Joint Encoding with Relational Graph Convolutional Networks for Emotion-Cause Pair Extraction[C]//Conference on Empirical Methods in Natural Language Processing(EMNLP), 2022:5339-5351. [paper]
9. Junhao Zheng, Zhanxian Liang, Haibin Chen, Qianli Ma*. Distilling Causal Effect from Miscellaneous Other-Class for Continual Named Entity Recognition[C]//Conference on Empirical Methods in Natural Language Processing(EMNLP), 2022:3602-3615. [paper][code]
8. Huawen Feng, Qianli Ma*. It’s Better to Teach Fishing than Giving a Fish: An Auto-Augmented Structure-aware Generative Model for Metaphor Detection[C]//Findings of Conference on Empirical Methods in Natural Language Processing(EMNLP), 2022: 656-667. [paper]
7. Haibin Chen, Qianli Ma*, Zhenxi Lin, Jiangyue Yan. Hierarchy-aware label semantics matching network for hierarchical text classification[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(ACL) (Volume 1: Long Papers). 2021: 4370-4379. [paper]
6. Xichen Shang, Qianli Ma*, Zhenxi Lin, Jiangyue Yan, Zipeng Chen. A Span-based Dynamic Local Attention Model for Sequential Sentence Classification[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(ACL) (Volume 2: Short Papers). 2021: 198-203. [paper]
5. Haibin Chen, Qianli Ma*, Liuhong Yu, Zhenxi Lin, Jiangyue Yan. Corpus-Aware Graph Aggregation Network for Sequence Labeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing(TASLP), 2021, 29: 2048-2057. [paper]
4. Qianli Ma*, Jiangyue Yan, Zhenxi Lin, Liuhong Yu, Zipeng Chen. Deformable Self-Attention for Text Classification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing(TASLP), 2021, 29: 1570-1581. [paper]
3. Qianli Ma*, Zhenxi Lin, Jiangyue Yan, Zipeng Chen, Liuhong Yu. Mode-LSTM: a parameter-efficient recurrent network with multi-scale for sentence classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020: 6705-6715. [paper]
2. Qianli Ma*, Liuhong Yu, Shuai Tian, Enhuan Chen, Wing W. Y. Ng. Global-local mutual attention model for text classification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing(TASLP), 2019, 27(12): 2127-2139. [paper]
1. Luoqin Li, Jiabing Wang, Jichang Li, Qianli Ma*, Jia Wei. Relation classification via keyword-attentive sentence mechanism and synthetic stimulation loss[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing(TASLP), 2019, 27(9): 1392-1404. [paper]
Others:
4. Sen Li, Fuyu Lv, Taiwei Jin, Yukun Zheng, Tao Zhuang, Qingwen Liu, Xiaoyi Zeng, James T.Kwok, Qianli Ma*. Query Rewriting in TaoBao Search[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management(CIKM). 2022: 3262-3271. [paper]
3. Jiawei Zheng, Qianli Ma*, Hao Gu, Zhenjing Zheng. Multi-view denoising graph auto-encoders on heterogeneous information networks for cold-start recommendation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining(KDD). 2021: 2338-2348. [paper]
2. Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiaoming Wu, Qianli Ma*. Embedding-based product retrieval in taobao search[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining(KDD). 2021: 3181-3189. [paper]
1. Wenguang Yuan, Jia Wei, Jiabing Wang, Qianli Ma, Tolga Tasdizen. Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22. Springer International Publishing, 2019: 229-237. [paper]
部分项目:
1. 广东省科技计划项目(国际科技合作领域). “面向大规模时间序列数据表示学习的研究”,编号:2023A0505050106,项目起止时间:2023年9月-2025年9月.
2. 南方电网科研院项目,“配电网智能交互框架及边缘计算资源分配关键技术研究”,编号:2023440002001056,项目起止时间:2023年4月-2024年9月.
3. 国家自然科学基金面上项目,“面向低质量时间序列的鲁棒性表示学习”, 编号:62272173,项目起止时间:2023
年1月-2026年12月.
4. 广东省自然科学基金面上项目,“面向现实复杂场景中的时间序列数据建模”,编号:2022A1515010179,项
目起止时间:2022年1月-2024年12月.
5. 国家自然科学基金项目,“基于高维随机投影的深度储备池计算模型研究”,编号:61872148,项目起止时间:2019年1月-2022年12月。
6. 国家自然科学基金项目,“多尺度模块网络下的储备池神经计算模型及算法研究”,编号:61502174,项目起止时间:2016年1月-2018年12月。
7. 广州市科技计划项目-产学研协同创新重大专项,“基于深度学习的商业智能分析平台关键技术研发”,编号:201704030051,项目起止时间:2017年5月-2019年12月。
------------------------------------------------------------------------------------------
实验室成员
在读学生
博士生
2025 蔡希迪
2024 黎泊远
2023 吴斌权
2022 郑俊豪 邝涛杰 冯华文
2021 柳真
硕士生
2025 李秋科 苏琪 张少为 柯宇浩
2024 侯晓文 曾坤 姚泽坤 施成明
2023 邱圣洁 吴钺 罗奕城 陈家豪
2022 刘俊龙 张崇志 严景松 汪灵浩
2021 袁海桃 刘嘉麒 程雨
已毕业学生
2020 陈海斌(@阿里) 陈楚鑫(@阿里) 朱思颖(@腾讯) 尚曦辰(@字节)
2019 郑佳炜(@腾讯) 郑镇境(@腾讯) 陈子鹏(@蚂蚁) 余忠忠(@字节)
2018 黄德森(@百度) 李森(@字节) 林镇溪(@腾讯) 闫江月(@京东)
2017 余柳红(@华为) 庄万青(@腾讯) 李森(@阿里)
2016 陈恩欢(@字节) 田帅(@微信)
2015 沈礼锋(@重庆邮电大学教师)
2012 蒋佳军(@百度)
2010 陈威彪(@民航局)
2009 林泽鑫(联合指导,@易方达基金) 周卫敏(联合指导,@中兴)
2008 吴广财(联合指导,@广东电网) 郑杰生(联合指导,@广东电网)
------------------------------------------------------------------------------------------
教授课程:离散数学、深度学习
招生要求(本科生SRP、实习、研究生等):
1.对人工智能领域感兴趣;成绩好;逻辑思维清晰;算法编程能力强;能不太困难的阅读英文文献;能吃苦
2.修读或自学过以下课程:
线性代数 概率统计 算法分析与设计 机器学习
3.掌握至少一门工具:C++、JAVA、Python、Matlab
4.参加过ACM竞赛、数模竞赛等(此项非必备条件)
5.需要本人写推荐信的同学请注意,为了使推荐信评价更客观公正,本人只给在我们组至少工作过6个月(含)以上的同学写推荐信,请谅解。