In-situ introducing TiP2 nanocrystals in black phosphorus anode to promote high rate-capacity synergy
作者:Zhou, FC (Zhou, Fengchen)[ 1 ] ; Yang, XS (Yang, Xu-Sheng)[ 3,4 ] ; Liu, JW (Liu, Jiangwen)[ 1 ] ; Liu, J (Liu, Jun)[ 1 ] ; Hu, RZ (Hu, Renzong)[ 1 ] ; Ouyang, LZ (Ouyang, Liuzhang)[ 1,2 ] ; Zhu, M (Zhu, Min)[ 1 ]
查看 Web of Science ResearcherID 和 ORCID
JOURNAL OF POWER SOURCES
卷: 499
文献号: 229979
DOI: 10.1016/j.jpowsour.2021.229979
出版年: JUL 1 2021
文献类型:Article
查看期刊影响力
摘要
Owing to the high theoretic capacity (2596 mAh g(-1)) and suitable lithiation potential (similar to 0.7 V vs. Li+/Li), Black phosphorus (BP) is considered as an ideal anode material for the fast-charging lithium-ion batteries. However, BP still faces the large volume change and low Li+ transfer during the charge/discharge. In this work, a facile two-step high-energy ball milling method is developed to synthesis the black phosphorus@TiP2-C (CBP@TiP2-C) nanocomposite for the high-rate performance anode material, in which the conductive nanocrystalline TiP2 is in-situ introduced and uniformly distributed into BP-C matrix. We reveal that the uniformly dispersed TiP2 nanocrystals can enhance the electronic and ionic conductivities of active particles and the electrode reaction kinetics. The lithiation product cubic LiyTiP4 phase is beneficial to release the stress, reduce the Li+ diffusion energy barrier and accelerate the Li+ extraction from LiP3 upon delithiation. Moreover, the contact among different components can be improved by Ti-C and P-C bonds in the CBP@TiP2-C, thus ensuring excellent electric contact within the material and enhancing the structural stability of composites. As a result, the CBP@TiP2-C anode displays a high reversible capacity of 1007.4 mAh g(-1) at 10.0 A g(-1) and excellent capacity retention of 925.6 mAh g(-1) after 500 cycles at 2 A g(-1).
关键词
作者关键词:TiP2 nanocrystal; Black phosphorus; In-situ; Chemical bond; Lithium ion battery
KeyWords Plus:RED PHOSPHORUS; LITHIUM-ION; CARBON; PERFORMANCE; COMPOSITE; STORAGE
作者信息
通讯作者地址:
South China University of Technology South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China.
Hong Kong Polytechnic University Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China.
通讯作者地址: Ouyang, LZ (通讯作者)
显示更多 South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China.
通讯作者地址: Yang, XS (通讯作者)
显示更多 Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China.
地址:
显示更多 [ 1 ] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
[ 2 ] China Australia Joint Lab Energy & Environm Mat, Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou 510641, Peoples R China
显示更多 [ 3 ] Hong Kong Polytech Univ, Adv Mfg Technol Res Ctr, Dept Ind & Syst Engn, Hung Hom, Hong Kong, Peoples R China
显示更多 [ 4 ] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
电子邮件地址:xsyang@polyu.edu.hk; meouyang@scut.edu.cn
基金资助致谢
基金资助机构显示详情 授权号
National Natural Science Foundation of China (NSFC)
NSFC51621001
National Natural Science Foundation of China (NSFC)
51771075
51971187
查看基金资助信息
出版商
ELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
期刊信息
Impact Factor (影响因子): Journal Citation Reports
类别 / 分类
研究方向:Chemistry; Electrochemistry; Energy & Fuels; Materials Science
Web of Science 类别:Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary