In-situ introducing TiP2 nanocrystals in black phosphorus anode to promote high rate-capacity synergy

时间:2021-09-16作者:浏览量:99


In-situ introducing TiP2 nanocrystals in black phosphorus anode to promote high rate-capacity synergy

作者:Zhou, FC (Zhou, Fengchen)[ 1 ] ; Yang, XS (Yang, Xu-Sheng)[ 3,4 ] ; Liu, JW (Liu, Jiangwen)[ 1 ] ; Liu, J (Liu, Jun)[ 1 ] ; Hu, RZ (Hu, Renzong)[ 1 ] ; Ouyang, LZ (Ouyang, Liuzhang)[ 1,2 ] ; Zhu, M (Zhu, Min)[ 1 ]

 

查看 Web of Science ResearcherID  ORCID

JOURNAL OF POWER SOURCES

 

: 499

文献号: 229979

 

DOI: 10.1016/j.jpowsour.2021.229979

 

出版年: JUL 1 2021

 

文献类型:Article

 

查看期刊影响力

 

摘要

Owing to the high theoretic capacity (2596 mAh g(-1)) and suitable lithiation potential (similar to 0.7 V vs. Li+/Li), Black phosphorus (BP) is considered as an ideal anode material for the fast-charging lithium-ion batteries. However, BP still faces the large volume change and low Li+ transfer during the charge/discharge. In this work, a facile two-step high-energy ball milling method is developed to synthesis the black phosphorus@TiP2-C (CBP@TiP2-C) nanocomposite for the high-rate performance anode material, in which the conductive nanocrystalline TiP2 is in-situ introduced and uniformly distributed into BP-C matrix. We reveal that the uniformly dispersed TiP2 nanocrystals can enhance the electronic and ionic conductivities of active particles and the electrode reaction kinetics. The lithiation product cubic LiyTiP4 phase is beneficial to release the stress, reduce the Li+ diffusion energy barrier and accelerate the Li+ extraction from LiP3 upon delithiation. Moreover, the contact among different components can be improved by Ti-C and P-C bonds in the CBP@TiP2-C, thus ensuring excellent electric contact within the material and enhancing the structural stability of composites. As a result, the CBP@TiP2-C anode displays a high reversible capacity of 1007.4 mAh g(-1) at 10.0 A g(-1) and excellent capacity retention of 925.6 mAh g(-1) after 500 cycles at 2 A g(-1).

 

关键词

作者关键词:TiP2 nanocrystal; Black phosphorus; In-situ; Chemical bond; Lithium ion battery

 

KeyWords Plus:RED PHOSPHORUS; LITHIUM-ION; CARBON; PERFORMANCE; COMPOSITE; STORAGE

 

作者信息

通讯作者地址:

 

South China University of Technology South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China.

Hong Kong Polytechnic University Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China.

通讯作者地址: Ouyang, LZ (通讯作者)

 

显示更多       South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China.

通讯作者地址: Yang, XS (通讯作者)

显示更多       Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China.

地址:

 

显示更多       [ 1 ] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China

          [ 2 ] China Australia Joint Lab Energy & Environm Mat, Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou 510641, Peoples R China

显示更多       [ 3 ] Hong Kong Polytech Univ, Adv Mfg Technol Res Ctr, Dept Ind & Syst Engn, Hung Hom, Hong Kong, Peoples R China

显示更多       [ 4 ] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China

电子邮件地址:xsyang@polyu.edu.hk; meouyang@scut.edu.cn

 

基金资助致谢

基金资助机构显示详情       授权号

National Natural Science Foundation of China (NSFC)

 

NSFC51621001

National Natural Science Foundation of China (NSFC)

 

51771075

51971187

查看基金资助信息  

出版商

ELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS

 

期刊信息

Impact Factor (影响因子): Journal Citation Reports

类别 / 分类

研究方向:Chemistry; Electrochemistry; Energy & Fuels; Materials Science

 

Web of Science 类别:Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary