Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries

时间:2021-04-23作者:浏览量:274


Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries

作者:Li, FK (Li, Fangkun)[ 1 ] ; Liu, ZB (Liu, Zhengbo)[ 1 ] ; Shen, JD (Shen, Jiadong)[ 1 ] ; Xu, XJ (Xu, Xijun)[ 1 ] ; Zeng, LY (Zeng, Liyan)[ 1 ] ; Li, Y (Li, Yu)[ 1 ] ; Zhang, DC (Zhang, Dechao)[ 1 ] ; Zuo, SY (Zuo, Shiyong)[ 1 ] ; Liu, J (Liu, Jun)[ 1 ]

 

查看 Web of Science ResearcherID  ORCID

NANOMATERIALS

 

: 10 : 12

文献号: 2495

 

DOI: 10.3390/nano10122495

 

出版年: DEC 2020

 

文献类型:Article

 

查看期刊影响力

 

摘要

The cathode, a crucial constituent part of Li-ion batteries, determines the output voltage and integral energy density of batteries to a great extent. Among them, Ni-rich LiNixCoyMnzO2 (x + y + z = 1, x >= 0.6) layered transition metal oxides possess a higher capacity and lower cost as compared to LiCoO2, which have stimulated widespread interests. However, the wide application of Ni-rich cathodes is seriously hampered by their poor diffusion dynamics and severe voltage drops. To moderate these problems, a nanobrick Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode with a preferred orientation (110) facet was designed and successfully synthesized via a modified co-precipitation route. The galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) analysis of LiNi0.6Co0.2Mn0.2O2 reveal its superior kinetic performance endowing outstanding rate performance and long-term cycle stability, especially the voltage drop being as small as 67.7 mV at a current density of 0.5 C for 200 cycles. Due to its unique architecture, dramatically shortened ion/electron diffusion distance, and more unimpeded Li-ion transmission pathways, the current nanostructured LiNi0.6Co0.2Mn0.2O2 cathode enhances the Li-ion diffusion dynamics and suppresses the voltage drop, thus resulting in superior electrochemical performance.

 

关键词

作者关键词:Li-ion batteries; Ni-rich layered cathode; preferred orientation; diffusion dynamics; voltage drop

 

KeyWords Plus:DENSITY CATHODE; CAPACITY; FACETS

 

作者信息

通讯作者地址:

 

South China University of Technology South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Guangdong, Peoples R China.

通讯作者地址: Liu, J (通讯作者)

 

显示更多         South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Guangdong, Peoples R China.

地址:

 

显示更多         [ 1 ]‎ South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Guangdong, Peoples R China

电子邮件地址:mslifk@scut.edu.cn; 201810103813@mail.scut.edu.cn; 201910103734@mail.scut.edu.cn; xuxijun2019@scut.edu.cn; 201820117753@mail.scut.edu.cn; 201820117766@mail.scut.edu.cn; 201810103808@mail.scut.edu.cn; shyzuo@scut.edu.cn; msjliu@scut.edu.cn

 

基金资助致谢

基金资助机构显示详情         授权号

National Natural Science Foundation of China (NSFC)

 

51771076

Guangdong Pearl River Talents Plan

 

2017GC010218

查看基金资助信息  

出版商

MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND

 

类别 / 分类

研究方向:Chemistry; Science & Technology - Other Topics; Materials Science; Physics

 

Web of Science 类别:Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied