标题
作者
作者:Liu, H (Liu, Hui)[1 ]; Hu, RZ (Hu, Renzong)[1 ]; Sun, W (Sun, Wei)[1 ]; Zeng, MQ (Zeng, Meiqin)[1 ]; Liu, JW (Liu, Jiangwen)[1 ]; Yang, LC (Yang, Lichun)[1 ]; Zhu, M (Zhu, Min)[1 ]
期刊信息
卷:
页:
DOI:
出版年:
文献类型:Article
摘要
An advanced tin oxide-coated tin in graphite (Sn@SnOx/C) nanocomposite is synthesized with a one-step method of dielectric barrier discharge oxygen plasma-assisted milling (O-2-P-milling). Synergetic effects of rapid plasma heating and impact stress act on the tin/graphite powder during O-2-P-milling, and SnOx (1 <= x <= 2) is generated in situ on the Sn surface from the reaction between Sn and oxygen. The resulting composite possesses a unique microstructure, where Sn nanoparticles coated by an ultrathin amorphous/nanocrystalline SnOx layer are homogeneously embedded within a graphite matrix. As lithium ion anodes, the Sn@SnOx/C nanocomposites display superior electrochemical performance to Sn-C and Sn-SnO2-C nanocomposites milled under argon plasma. The SnOx/C nanocomposite obtained after O-2-P-milling for 25 h that contains a high content of amorphous/nanocrystalline SnOx exhibits a high capacity retention of 500 mA h g(-1) at 250 mA g(-1) after 70 cycles, indicating that O-2-P-milling is a promising method to prepare Sn-based multiphase nanocomposite anode materials. (C) 2013 Elsevier B.V. All rights reserved.
关键词
作者关键词:Anode; Lithium ion batteries; Milling; Oxygen plasma; Tin oxides
作者信息
通讯作者地址:Zhu, M (通讯作者)
![]() | S China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510640, Guangdong, Peoples R China. |
地址:
![]() | [ 1 ] S China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510640, Guangdong, Peoples R China |
电子邮件地址:memzhu@scut.edu.cn
出版商
类别分类
研究方向:Chemistry; Electrochemistry; Energy & Fuels; Materials Science
Web of Science 类别:Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary