职称:副教授
邮箱:sinanxiao@scut.edu.cn
工作单位:吴贤铭智能工程学院
邮政编码:510640
毕业院校:西北工业大学航空学院
办公室:
最后学位:工学博士
办公电话:
导师类别:硕、博导
肖思男,毕业于西北工业大学,先后在德国斯图加特大学、德国于利希研究中心以及英国巴斯大学从事研究工作,现就职于华南理工大学吴贤铭智能工程学院,任副教授,主要研究方向为结构不确定性量化,结构可靠性分析与设计,贝叶斯机器学习等。主持了1项中德博士后奖学金项目,作为核心成员参与了1项德国科学基金会项目以及1项英国工程和自然科学研究委员会项目,共发表学术论文40余篇,以第一作者/通讯作者发表SCI学术论文20余篇(1区论文16篇),H-index: 17,担任JCRQ1期刊Mathematics客座编辑,受邀参与了捷克科学基金会项目的评审。
肖思男博士目前主要研究兴趣包括:
结构可靠性设计及风险分析:结合概率统计理论和结构(有限元)模型预测结构的可靠度,对结构进行可靠性优化设计,对相应的风险进行评估。
贝叶斯不确定性量化:基于先验信息和观测数据,采用贝叶斯统计推断理论校准模型参数,量化结构参数及响应的不确定性,为智能化决策提供依据。
贝叶斯实验设计:充分考虑先验信息的作用,将其融入实验设计和结果分析中,逐步更新模型,实现用较少的实验代价获取更多的信息。
模型敏感性分析:量化模型参数对模型输出响应的的影响,深入了解模型(系统)输入变量与输出变量之间的关系,量化模型(系统)对不确定性因素的稳健性。
欢迎感兴趣的学生加入!学生专业背景(包含但不限于):机械工程、力学、航空航天、土木工程、概率统计等。
2024年9月 至 今,华南理工大学,广州,副教授
2021年6月 至 2024年9月,巴斯大学,巴斯,英国,研究助理
2020年2月 至 2021年3月,于利希研究中心,于利希,德国,博士后
2018年8月 至 2021年1月,斯图加特大学,斯图加特,德国,博士后
2013年9月-2018年3月,西北工业大学,西安,飞行器设计,博士研究生
2009年9月-2013年7月,西北工业大学,西安,飞行器设计与工程,本科
结构可靠性设计与风险分析
贝叶斯不确定性量化
贝叶斯实验设计
模型敏感性分析
2020 西北工业大学优秀博士论文
2018 德意志学术交流中心奖学金
1. S. Xiao, W. Nowak (2024). Failure probability estimation with failure samples: An extension of the two-stage Markov chain Monte Carlo simulation. Mechanical Systems and Signal Processing. 212, 111300
2. L. Chavez Rodriguez, A. González-Nicolás, B. Ingalls, T. Streck, W. Nowak, S. Xiao, & H. Pagel (2022). Optimal design of experiments to improve the characterisation of atrazine degradation pathways in soil. European Journal of Soil Science, 73(1), e13211
3. S. Xiao, W. Nowak (2022). Reliability sensitivity analysis based on a two-stage Markov chain Monte Carlo simulation. Aerospace Science and Technology, 130, 107938.
4. M. Hinze, S. Xiao, A. Schmidt, W. Nowak (2022). Experimental evaluation and uncertainty quantification for a fractional viscoelastic model of salt concrete. Mechanics of Time-Dependent Materials, 1-24.
5. K. Cheng, Z. Lu, S. Xiao, S. Oladyshkin, W. Nowak (2022) Mixed covariance function kriging model for uncertainty quantification. International Journal for Uncertainty Quantification. 12(3), 17-30.
6. S. Xiao, T. Xu, S. Reuschen, W. Nowak, & H.-J. Hendricks Franssen (2021). Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: An extension of preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering. Water Resources Research, 57, e2021WR030313.
7. S. Xiao, T. Praditia, S. Oladyshkin, W. Nowak (2021). Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis. Applied Energy, 285, 116456.
8. K. Cheng, Z. Lu. S. Xiao, X. Zhang, S. Oladyshkin, W. Nowak (2021). Resampling method for reliability-based design optimization based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 156, 107630.
9. S. Xiao, S. Oladyshkin, W. Nowak (2020). Forward-reverse switch between density-based and regional sensitivity analysis. Applied Mathematical Modelling, 84, 377-392.
10. S. Xiao, S. Oladyshkin, W. Nowak (2020). Reliability analysis with stratified importance sampling based on adaptive Kriging. Reliability Engineering & System Safety, 197, 106852.
11. D. Erdal, S. Xiao, W. Nowak, O.A. Cirpka (2020). Sampling behavioral model parameters for ensemble-based sensitivity analysis using Gaussian process emulation and active subspaces. Stochastic Environmental Research and Risk Assessment, 34(11), 1813-1830.
12. S. Xiao, Z. Lu (2020). Structural reliability analysis with conditional importance sampling method based on the law of total expectation and variance in subintervals. Journal of Engineering Mechanics, 146(1), 04019111.
13. S. Xiao, S. Oladyshkin, W. Nowak (2019). Reliability sensitivity analysis with subset simulation: application to a carbon dioxide storage problem. IOP Conference Series: Materials Science and Engineering, 615, 012051.
14. S. Xiao, S. Reuschen, G. Köse, S. Oladyshkin, W. Nowak (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248.
15. Y. Wang, S. Xiao, Z. Lu (2019). An efficient method based on Bayes’ theorem to estimate the failure-probability-based sensitivity measure. Mechanical Systems and Signal Processing, 115, 607-620.
16. L. Xu, Z. Lu, S. Xiao (2019). Generalized sensitivity indices based on vector projection for multivariate output. Applied Mathematical Modelling, 66, 592-610.
17. Y. Zhou, Z. Lu, S. Xiao, W. Yun (2019). Distance correlation-based method for global sensitivity analysis of models with dependent inputs. Structural and Multidisciplinary Optimization, 60, 1189-1207
18. S. Xiao, Z. Lu, P. Wang (2018). Multivariate global sensitivity analysis based on distance components decomposition. Risk Analysis, 38(12), 2703-2721.
19. S. Xiao, Z. Lu (2018). Global sensitivity analysis based on Gini’s mean difference. Structural and Multidisciplinary Optimization, 58(4), 1523-1535
20. S. Xiao, Z. Lu, P. Wang (2018). Global sensitivity analysis based on distance correlation for structural systems with multivariate output. Engineering Structures, 167, 74-83.
21. Y. Wang, S. Xiao, Z. Lu (2018). A new efficient simulation method based on Bayes' theorem and importance sampling Markov chain simulation to estimate the failure-probability-based global sensitivity measure. Aerospace Science and Technology, 79, 364-372.
22. S. Xiao, Z. Lu, L. Xu (2018). Global sensitivity analysis based on random variables with interval parameters by metamodel-based optimization. International Journal of Systems Science: Operations & Logistics 5(3), 268-281.
23. S. Xiao, Z. Lu (2018). Reliability analysis by combining higher-order unscented transformation and fourth-moment method. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(1), 04017034.
24. S. Xiao, Z. Lu, P. Wang (2018). Multivariate global sensitivity analysis for dynamic models based on energy distance. Structural and Multidisciplinary Optimization. 57(1), 279-291.
25. P. Wang, Z. Lu, K. Zhang, S. Xiao, Z. Yue (2018). Copula-based decomposition approach for the derivative-based sensitivity of variance contributions with dependent variables. Reliability Engineering & System Safety, 169, 437-450
26. S. Xiao, Z. Lu, P. Wang (2018). Multivariate global sensitivity analysis for dynamic models based on wavelet analysis. Reliability Engineering & System Safety, 170, 20-30.
27. S. Xiao, Z. Lu (2017). Structural reliability sensitivity analysis based on classification of model output. Aerospace Science and Technology, 71, 52-61.
28. S. Xiao, Z. Lu, L. Xu (2017). Multivariate sensitivity analysis based on the direction of eigen-space through principal component analysis. Reliability Engineering & System Safety, 165, 1-10.
29. S. Xiao, Z. Lu, F. Qin (2017). Estimation of the Generalized Sobol’s Sensitivity Index for Multivariate Output Model Using Unscented Transformation. Journal of Structural Engineering, 143(5), 06016005.
30. P. Wang, Z. Lu, S. Xiao (2017). A generalized separation for the variance contributions of input variables and their distribution parameters. Applied Mathematical Modelling, 47, 381-399.
31. P. Wang, Z. Lu, S. Xiao (2017). Variance-based sensitivity analysis with the uncertainties of the input variables and their distribution parameters. Communication in Statistics- Simulation and Computation, 47(4), 1103-1125.
32. S. Xiao, Z. Lu, L. Xu (2016). A new effective screening design for structural sensitivity analysis of failure probability with the epistemic uncertainty. Reliability Engineering & System Safety, 156, 1-14.
33. S. Xiao, Z. Lu (2016). Structural Reliability Analysis Using Combined Space Partition Technique and Unscented Transformation. Journal of Structural Engineering, 142(11), 04016089.
基于最优条件重要抽样法的结构失效概率的求解方法, 2022-11-04, 中国, ZL201811029879.7