
基本信息
联系方式:gaoliece@scut.edu.cn
招生专业
个人简介
高立,国家级青年人才,小米青年学者。研究方向为:射频毫米波电路、天线、芯片及系统设计。主要业绩:设计了多款高性能毫米波芯片,并参与量产一款毫米波芯片;发表IEEE期刊论文30多篇;多次在国际会议上作特邀报告,授权专利4项;担任IEEE JSSC, IEEE TMTT, IEEE TCASI等多个国际期刊审稿人。Google scholar引用2000余次,H因子26。
Li Gao,National-level Young Talent, Xiaomi Young Talents. Research interest: RF/millimeter-wave circuit, antenna, integrated circuits and system designs. Main achievements: He has designed multiple high performance millimeter-wave ICs and attend the design of one massive production IC. Published more than 30 IEEE journal academic papers, contributed to 4 patents. Served as a reviewer for international journals such as IEEE JSSC, IEEE TMTT, IEEE TCASI, etc. His total google scholar citation is more than 2000 times with a H-index of 26.
教育经历
2015-7至2020-6, 加州大学圣地亚哥分校(UCSD), 博士
2012-9至2015-6, 华南理工大学, 硕士
2008-9至2012-6, 华南理工大学, 学士(GPA Rank: 1/283)
工作经历
2024-3至今, 华南理工大学, 教授
2022-5至2024-3, Apple Inc (苹果公司), 高级工程师
2020-4至2022-5, Mediatek USA (联发科美国公司), 高级工程师
研究方向
射频毫米波电路、天线、芯片及系统设计
WiFi/IoT低功耗高能效电路设计
计算机辅助优化电路设计
学术任职
IEEE Member
担任IEEE JSSC, TMTT, TCASI, TCASII, MWTL等多个国际著名期刊审稿人
科研项目
国家自然科学基金青年基金-主持
国家自然科学基金海外优青-支持
广东省重点研发计划-参与
代表性科研成果
google scholar: https://scholar.google.com/citations?hl=zh-CN&user=YxkMuYsAAAAJ
期刊论文
[1] L. Gao, S. Zhang, X. Liu, J. Hu, and X. Y. Zhang, “A Ka-band reconfigurable dual-band variabale gain amplifier with low phase variation for 5G communications,” IEEE Trans. Circuits Syst. I, Reg. Papers, accepted.
[2] N. -Z. Sun, L. Gao, W. Zeng, J. Hu, X. Liu, and X. Y. Zhang, “A balanced power amplifier with complementary adaptive-bias in 28-nm bulk CMOS for 5G millimeter-wave systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, accepted. (corresponding author)
[3] N. -Z. Sun, L. Gao, H. –Y. Li, J. –X. Xu, and X. Y. Zhang, “A compact millimeter-wave reconfigurable dual-band LNA with image-rejection in 28-nm bulk CMOS for 5G application,” IEEE J. Solid-State Circuits, vol. 59, no. 10, pp. 3406-3416, Oct. 2024. (corresponding author)
[4] W. Zeng, L. Gao, N. Sun, H. –Y. Li, J. –X. Xu, H. Xu, Q. Xue, and X. Y. Zhang, “A compact 19.7-to-43.8 GHz power amplifier with 20.3 dBm Psat and 35.5% PAE in 28-nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 59, no. 8, pp. 2455-2467, Aug. 2024. (corresponding author)
[5] S. Zhang, L. Gao, H. -Y. Li, J. –X. Xu, and X. Y. Zhang, “A Ka-band ultra-wideband variable gain amplifier with low phase variation for 5G communications,” IEEE Microw. Wireless Compon. Lett., vol. 34, no. 5, pp. 516-519, May. 2024.
[6] W. Zeng, L. Gao, N. Sun, H. -Y. Li, J. –X. Xu, H. Xu, Q. Xue, and X. Y. Zhang, “A compact 19.7-to-43.8 GHz power amplifier with 20.3 dBm Psat and 35.5% PAE in 28-nm bulk CMOS,” IEEE J. Solid-State Circuits, 2024. (Corresponding author)
[7] H. -T. Lin, L. Gao, H. -Y. Li, J. –X. Xu, and X. Y. Zhang, “A 23.6-46.5 GHz LNA with 3 dB NF and 24 dB gain tuning range in 28-nm CMOS Technology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 71, no. 1, pp. 29-39, Jan. 2024.
[8] N. -Z. Sun, H. -Y. Li, J. -X. Xu, L. Gao, and X. Y. Zhang, “A 52-65 GHz frequency quadrupler with low conversion loss and high harmonic rejection ration in 28-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 70, no. 8, pp. 2784-2788, Aug. 2023.
[9] H. -Y. Li, J. -X. Xu, L. Gao, Q. Xue, and X. Y. Zhang, “24-35 GHz filtering LNA and filtering switch using compact mixed magnetic-electric coupling circuit in 28-nm bulk CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 3, pp. 1071-1082, Mar. 2023.
[10] L. Gao, and G. M. Rebeiz, “A 20-42 GHz IQ receiver in 22-nm CMOS FD-SOI with 2.7-4.2 dB NF and -25 dBm IP1dB for wideband 5G systems,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 4951-4960, Nov. 2021.
[11] L. Gao, and G. M. Rebeiz, “Design of wideband bandpass filter for 5G millimeter-wave application in 45-nm CMOS Silicon-on-Insulator,” IEEE Electron Device Lett., vol. 42, no. 8, pp. 1244-1247, Aug. 2021.
[12] J. X. Xu, Y. -M. Xue, L. Gao, and X. Y. Zhang, “Switchable filtering circuit with single- and multi-channel operations,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 12, pp. 2958-2962, Dec. 2020.
[13] L. Gao, and G. M. Rebeiz, “A 22-44 GHz phased-array receive beamformer in 45-nm CMOS SOI for 5G applications with 3-3.6 dB NF,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4765-4774, Nov. 2020.
[14] M. Lokhandwala, L. Gao, and G. M. Rebeiz, “A high power 24-40 GHz transmit-receive front-end for phased-arrays in 45-nm CMOS SOI,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4775-4786, Nov. 2020. (Co-first author & corresponding author)
[15] Y. Yin, S. Zihir, T. Kanar, Q. Ma, H. Chung, L. Gao, and G. M. Rebeiz, “A 37-42 GHz 8x8 phased-array with 48-51 dBm EIRP, 64-QAM 30 Gbps data rates and EVM analysis versus channel errors,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4753-4764, Nov. 2020.
[16] L. Gao, Q. Ma, and G. M. Rebeiz, “A 20-44 GHz image rejection receiver with >75 dB image rejection ratio in 22-nm CMOS FD-SOI for 5G application,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 2823-2832, Jul. 2020.
[17] H. Jiang, P.- H. Wang, L. Gao, C. Pochet, G. M. Rebeiz, D. Hall, and P. P. Mercier, “A 22.3 nW, 4.55 cm2 temperature-robust wake-up receiver achieving a sensitivity of -69.5 dBm at 9 GHz,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1530-1541, Jun. 2020.
[18] L. Gao, E. Wagner, and G. M. Rebeiz, “Design of E-/W-band low noise amplifiers in 22-nm CMOS FD-SOI,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 1, pp. 132-143, Jan. 2020.
[19] L. Gao, T. -W. Lin, and G. -M. Rebeiz, “Design of tunable multi-pole multi-zero bandpass filters and diplexer with high selectivity and isolation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 10, pp. 3831-3842, Oct. 2019.
[20] Y. Zhang, X. Y. Zhang, L. Gao, Y. Gao, and Q. H. Liu, “A two port microwave component with dual-polarized filtering antenna and single-band bandpass filter operations,” IEEE Trans. Antenna Propagation, vol. 67, no. 8, pp. 5590-5601, Aug. 2019.
[21] L. Gao, and G. -M. Rebeiz, “A 0.97-1.53 GHz tunable four-pole bandpass filter with four transmission zeros,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 195-197, Mar. 2019.
[22] P.- H. Wang, H. Jiang, L. Gao, P. Sen, Y. -H. Kim, G. M. Rebeiz, P. P. Mercier, and D. Hall, “A 6.1 nW wake-up receiver achieving -80.5 dBm sensitivity via a passive pseudo-balun envelop detector,” IEEE Solid-State Circuits Lett., pp. 134-137, vol. 1, no. 5, pp. 134-137, May 2018.
[23] P.- H. Wang, H. Jiang, L. Gao, P. Sen, Y. -H. Kim, G. M. Rebeiz, P. P. Mercier, and D. Hall, “A near-zero-power wake-up receiver achieving -69 dBm sensitivity,” IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1640-1652, June 2018.
[24] Q. -Y. Guo, X. Y. Zhang, and L. Gao, “Novel compact planar crossover with bandpass response based on cross-shaped resonator,” IEEE Trans. Components, Packaging and Manufacturing Tech., vol. 7, no.12, pp. 2018-2026, Dec. 2017.
[25] X. -L. Zhao, L. Gao, X. Y. Zhang, and J. -X. Xu, “Novel filtering power divider with wide stopband using discriminating coupling,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 8, pp. 580-582, Aug. 2016.
[26] L. Gao, X. Y. Zhang, X. -L. Zhao, Y. Zhang, and J. -X. Xu, “Novel compact quad-band bandpass filter with controllable frequencies and bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 6, pp. 395-397, June 2016.
[27] Q. -Y. Guo, X. Y. Zhang, L. Gao, Y. C. Li, and J. -X. Chen, “Micro- and millimeter-wave LTCC filters using discriminating coupling for mode suppression,” IEEE Trans. Components, Packaging and Manufacturing Tech., vol. 6, no. 2, pp. 272-281, Feb. 2016.
[28] Y. Zhang, L. Gao, and X. Y. Zhang, “Compact quad-band bandpass filter for DCS/WLAN/WiMAX/5G Wi-Fi application,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 645-647, Oct. 2015.
[29] L. Gao, X. Y. Zhang, and Q. Xue, “Compact tunable filtering power divider with constant absolute bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 10, pp. 3505-3513, Oct. 2015.
[30] L. Gao, X. Y. Zhang, and Q. Xue, “Compact tri-band bandpass filter using novel eight-mode resonator for 5G WiFi application,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 660-662, Oct. 2015.
[31] L. Gao, X. Y. Zhang, S. Chen, and Q. Xue, “Compact power amplifier with bandpass response and high efficiency,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 10, pp. 707-709, Oct. 2014.
[32] L. Gao, X. Y. Zhang, B. -J. Hu and Q. Xue, “Novel multi-stub loaded resonators and their applications to various bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 5, pp. 1162-1172, May 2014.
[33] L. Gao, and X. Y. Zhang, “High selectivity dual-band bandpass filter using a quad-mode resonator with source-load coupling,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 9, pp. 474-476, Sep. 2013.
会议论文
[1] W. Zeng, L. Gao, H. -Y. Li, J. -X. Xu, H. Xu, and X. Y. Zhang, “A tri-mode filtering power amplifier for 5G millimeter-wave dual-side LO injection systems with power-efficiency enhancement,” IEEE Custom Integrated Circuits Conference (CICC), Apr. 2024
[2] W. Zeng, L. Gao, N. Sun, H. Xu, Q. Xue, X. Y. Zhang, “A 19.7-43.8 GHz power amplifier with broadband linearization technique in 28nm bulk CMOS,” IEEE International Solid-State Circuits Conference (ISSCC) pp. 372-374, Feb. 2023.
[3] H. Chung, Q. Ma, Y. Yin, L. Gao, and G. M. Rebeiz, “A 25-29 GHz 64-element dual-polarized/dual-beam small-cell with 45 dBm 400 MHz 5G NR operation and high spectral purity,” IEEE MTT-S Int. Microw. Symp. Dig. (IMS), pp. 1267-1270, 2020.
[4] L. Gao, and G. M. Rebeiz, “A 24-43 GHz LNA with 3.1-3.7 dB noise figure and embedded 3-pole elliptic high-pass response for 5G applications in 22 nm FDSOI,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 239-242, 2019. (Selected as Best Paper Award Final List)
[5] L. Gao, Q. Ma, and G. M. Rebeiz, “A 4.7 mW W-band LNA with 4.2 dB NF and 12 dB gain using drain to gate feedback in 45nm CMOS RFSOI technology,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 280-283, 2018.
[6] L. Gao, Q. Ma, and G. M. Rebeiz, “A 1-17 GHz stacked distributed power amplifier with 19-21 dBm saturated output power in 45nm CMOS SOI technology,” IEEE MTT-S Int. Microw. Symp. Dig. (IMS), pp. 454-456, 2018.
[7] L. Gao, T. -W. Lin, and G. M. Rebeiz, “Tunable three-pole diplexer with high selectivity and isolation,” IEEE MTT-S Int. Microw. Symp. Dig. (IMS), pp. 1378-1380, 2018.
[8] T. -W. Lin, L. Gao, and G. M. Rebeiz, “400-560 MHz tunable 2-pole RF MEMS bandpass filter with improved stopband rejection”, IEEE MTT-S Int. Microw. Symp. Dig. (IMS), pp. 510-513, 2018.
[9] P.- H. Wang, H. Jiang, L. Gao, P. Sen, Y. -H. Kim, G. M. Rebeiz, P. P. Mercier, and D. Hall, “A 400 MHz 4.5 nW -63.8 dBm sensitivity wake-up receiver employing an active pseudo-balun envelop detector,” European Solid-State Circuit Conference (ESSCIRC), pp. 35-38, 2017.
[10] H. Jiang, P.- H. Wang, L. Gao, P. Sen, Y. -H. Kim, G. M. Rebeiz, D. Hall, and P. P. Mercier, “A 4.5nW wake-up radio with -69dBm sensitivity,” IEEE International Solid-State Circuits Conference (ISSCC) pp. 416-417, Feb. 2017.
发明专利
[1] 章秀银; 孙宁政; 徐金旭; 李慧阳; 高立,“频段可重构低噪声放大器及接收机、频段切换方法”,中国发明专利, 2023。
[2] 章秀银; 张思玮; 李慧阳; 徐金旭; 高立,“可重构可变增益放大器及无线通信设备、频段切换方法”,中国发明专利, 2023。
[3] 章秀银; 彭一帆; 高立; 李慧阳; 徐金旭,“一种可重构双频段数控移相器及接收机”,中国发明专利, 2023。
[4] Li Gao; Zhiming Deng, “Electronic device and method for reducing power consumption of signal transmission in electronic device”, 国际发明专利,2023。