报告主题: The Hausdorff measure and uniform fiber conditions for Bara\'nski carpets
报 告 人: 邱华 教授(南京大学)
报告时间:2025年1月8日(星期三)下午16:10-16:55
报告地点:37号楼3A02
邀 请 人: 李兵 教授
欢迎广大师生前往!
数学学院
2025年1月6日
报告摘要:
For a self-affine carpet $K$ of Bara\'{n}ski, we establish a dichotomy: either $0<\mathcal{H}^{\dim_H K}(K)<+\infty or \mathcal{H}^{\dim_H K}(K)=+\infty.$
We introduce four types of uniform fibre condition for $K$: Hausdorff ($\textbf{u.f.H}$), Box ($\textbf{u.f.B}$), Assouad ($\textbf{u.f.A}$), and Lower ($\textbf{u.f.L}$), which are progressively stronger, with $\textbf{u.f.L} \Longrightarrow \textbf{u.f.A} \Longrightarrow \textbf{u.f.B} \Longrightarrow \textbf{u.f.H},$ and each implication is strict. The condition $\textbf{u.f.H}$ serves as a criterion for the dichotomy. The remaining three conditions provide an equivalent characterization for the coincidence of any two distinct dimensions. The condition $\textbf{u.f.L}$ is also equivalent to the Ahlfors regularity of $K$. As a corollary, $\dim_H K=\dim_B K$ is sufficient but not necessary for $0<\mathcal{H}^{\dim_H K}(K)<+\infty$. This is a joint work with Qi Wang.
专家简介:
邱华,南京大学数学学院教授、博士生导师。主要从事分析学、位势论、分形分析的研究,主持多项国家级、省部级自然科学基金项目,在Probab. Theory Related Fields, Adv. Math., J. Funct. Anal., Potential Anal.等高水平学术期刊上发表论文四十余篇。