•  学术报告

关于举行非线性偏微分方程研讨班的通知

发布时间:2024-12-17文章来源:华南理工大学数学学院浏览次数:612

报告题目1:二维静止水波的非线性稳定性

报告人1:苏庆堂副研究员 (中国科学院)

报告时间:2024年 12月20日 (周五) 下午16:00--17:00         

报告地点:37号楼3A02会议室


报告题目2:Non-relativistic limit for the cubic nonlinear Klein-Gordon equations

报告人2:吴奕飞教授 (南京师范大学)

报告时间:2024年 12月22日 (周日) 下午14:00--14:40         

报告地点:四号楼4135室


报告题目3:Blowup for Classical Solutions of Isothermal Euler Equations in RN with the Second

Inertia Functional of Reference

报告人3:阮文威教授 (香港教育大学)

报告时间:2024年 12月22日 (周日) 下午15:20--16:00         

报告地点:四号楼4135室


报告题目4:Study of Traveling Wave Solutions of Nonlinear Wave Equations: Dynamical System

Approach

报告人4:张丽俊教授 (山东科技大学)

报告时间:2024年 12月22日 (周日) 下午16:20--17:00         

报告地点:四号楼4135室


报告题目5:Singularity formation for compressible MHD and shallow water system

报告人5:赖宁安教授 (浙江师范大学)

报告时间:2024年 12月22日 (周日) 下午17:00--17:40         

报告地点:四号楼4135室

 

邀请人:李用声教授,凌黎明教授


欢迎广大师生前往!


数学学院

2024年12月16日

 

报告1摘要:二维静止水波在光滑局部化(localized)扰动下的几乎整体与整体适定性由邬似珏(Invent 2009)、Ionescu & Pusateri (Invent 2015)、Alazard & Delort (Ann. Sci. Éc. Norm. Supér. 2015)等团队分别证明,但是其非线性稳定性长期公开。在这个报告,我将汇报如何证明二维静止水波的非线性稳定性。

报告人1简介:苏庆堂,中国科学院数学与系统科学研究院晨兴数学中心副研究员,国家级青年人才项目入选者。研究方向为水波方程的严格数学分析,在水波方程的长时间适定性、稳定性与不稳定性等问题取得了一系列成果,部分论文发表在Ann PDE、CMP、ARMA等国际著名刊物。


    报告人2简介:吴奕飞,南京师范大学数学科学学院博士研究生导师,偏微分方程方向学术带头人,入选国家“万人计划”创新领军人才、国家“万人计划”青年拔尖人才。主要从事偏微分方程、理论和数值计算方面的研究工作,研究的模型包括非线性色散波方程和流体力学方程。在JEMS, Com.Math.Phy., Adv. Math,Analysis&PDE, Tran.AMS,等学术期刊中发表论文多篇,主持国家自然科学基金面上项目等项目。


报告3摘要:In this paper, we consider the general N-dimensional isothermal compressible Euler equations such that the initial density is with a positive background density. By investigating the relations between the total reference mass, total reference energy and the reference second inertia H(t) in the case with background density, we establish a finite time blowup result with large data. More precisely, we shown that sufficiently large of -(H(0) + H'(0)) guarantees that the classical solutions of the system cannot survive smoothly on or before the time t = 1. This is a sole blowup condition depending only on initial data and initial parameters.

报告人3简介:Dr. YUEN Manwai has been an assistant professor in the Education University of Hong Kong. He obtained a Ph.D. in applied math from the Hong Kong Polytechnics University. Dr. Yuen's research interest is applied analysis of nonlinear partial differential equations, especially involving blowup phenomena and similar solutions. Dr. Yuen's about 90 journal papers (with 80 SCI or SCIE). His published papers have accumulated 685 citations and a H-index 15 from Scopus.


报告4摘要:This talk introduces the application of dynamic system method in the study of traveling wave solutions of nonlinear wave equations. Since there is a very good correspondence between the bounded orbits of the traveling wave systems and the traveling wave solutions interested in the nonlinear waves, the qualitative analysis and bifurcation analysis methods of the dynamic system have been well applied to the study of various nonlinear wave equations. The basic research ideas and new developments of the dynamical system method in the study of nonlinear wave equations with singularities, higher-order equations and traveling wave solutions of nonlinear wave equations with singular perturbations will be discussed.

报告人4简介:张丽俊,山东科技大学数学学院教授、博士生导师。主要研究方向有动力系统和微分方程的定性和分支理论、奇异摄动理论和方法及其在非线性方程行波解研究中的应用。曾在美国里海大学访问一年,获南非西北大学博士后基金资助三年,曾被邀请短期访问俄罗斯萨马拉大学和莫斯科大学、土耳其、南非数学研究所等国外大学和研究机构,并多次在国际会议做学术报告。目前在Nonlinear Analysis, Nonlinear Dynamics, Chaos, Solitons & Fractals, J. Comput. Appl.Math., J. Appl. Anal. Comp., 以及Disc. Cont. Dyn. systems等国际著名期刊以第一或通讯作者共发表SCI检索的论文70余篇。先后主持国家自然科学项目四项。


报告5摘要:In this talk I will present some singularity formation results for axially symmetric compressible MHD wave in 3-D and shallow water equations with Coriolis forces in “1.5”-D. The former result relies on some functional blow up, while the latter one is to construct solutions that form asymptotically self-similar Burgers-type shock in finite time, starting from a set of smooth initial data. These results are based on the joint works with Lyu Cai, Mengxuan Li and Wenze Su.

报告人5简介:赖宁安,浙江师范大学数学科学学院教授、博士生导师。在CPDE、JFA、JMPA、CVPDE等杂志发表学术论文多篇,2024年入选浙江省省级青年人才。