报告题目: Frobenius problem associated with the number of solutions
报 告人: 小松尚夫(Takao Komatsu)教授 (浙江理工大学)
报告时间: 2023年3 月29日(星期三)15:00-16:00
报告地点:4号楼4318室
邀 请人: 胡甦副教授
欢迎广大师生前往!
数学学院
2023年3月28日
报告摘要:Consider the number d(n;a_1,\dots,a_k) of non-negative integer solutions (x_1,\dots,x_k) of the linear diophantine equation n=a_1 x_1+\dots+a_k x_k, where a_1,\dots,a_k are positive integers. For a non-negative integer p, let S_p be the set of all n's such that d(n;a_1,\dots,a_k)>p. Then the set N_0\S_p is finite if and only if gcd(a_1,\dots,a_k)=1. The largest element and the cardinality of N_0\S_p are called the p-Frobenius number and the p-genus (p-Sylvester number), respectively. When p=0, the study on S=S_0 with the (0-)Frobenius number and the (0-)genus is known as the famous linear diophantine problem of Frobenius. In this talk, these backgrounds, tools and recent results for p>0 are given.
报告人简介:Takao Komatsu(小松尚夫),博士,教授。毕业于澳大利亚Macquarie大学,师从著名数论学家A.J.Van der Poorten,历任日本三重大学,弘前大学教授,2015年入选湖北省“百人计划”。在《Math.Comp.(AMS)》,《Math.Proc.Cambridge Philos.Soc.》,《Bull.Soc.Math.France》,《Japan.J.Math.》,《Journal of Number Theory》,《Acta Arithmetica》,《Acta Math.Hungar.》,《Indag.Math.》,《Monatsh.Math.》等国际知名学术期刊发表了接近225篇文章。他在连分数,丢番图逼近以及数论中的特殊函数方面做出了一系列成绩。