•  副教授

谷亚光

发布时间:2025-09-02文章来源:华南理工大学数学学院浏览次数:5886

工作经历

  • 2022.09-至今,华南理工大学,数学学院,副教授,硕士生导师

  • 2020.08-2022.08中国海洋大学,数学科学学院,科研博士后


教育背景

  • 2016.09-2019.11香港浸会大学,数学系,博士

  • 2013.09-2016.08澳门大学,数学系,硕士

  计算流体力学和区域分解方法

  近期主要从事多介质流体模型的高阶保物理约束方法研究


科研项目

  • 2024.01-2025.12,广州市基础与应用基础研究专题(青年博士“启航”项目)(主持,编号:SL2023A04J00672

  • 2024.01-2026.12,国家自然科学基金青年科学基金项目(主持,批准号:12301505

  • 2021.11-2022.06,中国博士后科学基金面上项目(主持,资助编号:2021M703040


科研论文(*表示通讯作者,Prof. Alexander Kurganov合作论文按姓氏排序,所有作者视为同等贡献


  • 已投稿的文章

  • 期刊论文



  • 会议论文

[1] Shumo Cui, Yaguang Gu*, Alexander Kurganov, and Ruixiao Xin, New Low-Dissipation Central-Upwind Scheme for Relativistic Hydrodynamics, submitted to Proceedings of the International Conference on Hyperbolic Problems: Theory, Numerics, and Applications (HYP2024).


  • 已发表和接收的文章

  • 期刊论文

[14] Qingcheng Fu, Yaguang Gu*, Alexander Kurganov, and Bao-Shan Wang, Bound- and Positivity-Preserving Path-Conservative Central-Upwind AWENO Scheme for the Five-Equation Model of Compressible Two-component Flows, Journal of Scientific Computing, 104 (2025), Article No. 94.

[13] Shumo Cui, Yaguang Gu, Alexander Kurganov, Kailiang Wu, and Ruixiao Xin*, Positivity-Preserving New Low-Dissipation Central-Upwind Schemes for Compressible Euler Equations, Journal of Computational Physics, 538 (2025), Article No. 114189.

[12] Yue Liu, Zhen Gao, Peng Li and Yaguang Gu*, High Order Well-Balanced Finite Difference AWENO Scheme for Ripa and Pollutant Transport Systems, Advances in Applied Mathematics and Mechanics, 17 (2025), pp. 554-572. 

[11] Zhen Gao, Shuang Guo, Bao-Shan Wang, and Yaguang Gu*, High Order Bound- and Positivity-preserving Finite difference Affine-invariant AWENO Scheme for the Five-equation Model of Two-medium Flows, Communications in Computational Physics, 36 (2024), pp. 781-820.

[10] Qingcheng Fu, Zhen Gao, Yaguang Gu, Peng Li*, and Bao-Shan Wang, Improved Well-balanced AWENO Schemes with Hydrostatic Reconstruction for the Euler Equations Under Gravitational Fields, Mathematics and Computers in Simulation, 2024, 221, pp. 260-280.

[9] Baifen Ren, Zhen Gao, Yaguang Gu, Shusen Xie, and Xiangxiong Zhang*, A Positivity-Preserving and Well-Balanced High Order Compact Finite Difference Scheme for Shallow Water Equations, Communications in Computational Physics, 35 (2024), pp. 524-552.

[8] Yaguang Gu, Zhen Gao*, Guanghui Hu, Peng Li, and Qingcheng Fu, High OrderWell-balanced Positivity-preserving Scale-invariant AWENO Scheme for EulerSystems with Gravitational Field, Journal of Computational Physics, 488 (2023), Article No. 112190.

[7] Xucheng Meng, Yaguang Gu and Guanghui Hu*, A Fourth-order Unstructured NURBS-enhanced Finite Volume WENO Scheme for Steady Euler Equations on Curved Geometries, Communications on Applied Mathematics and Computation, 5 (2023), pp. 315-342.

[6] Yaguang Gu, Dongmi Luo, Zhen Gao* and Yibing Chen, An Adaptive Moving Mesh Method for the Five-equation Model, Communications in Computational Physics, 32 (2022), pp. 189-221.

[5] Qingcheng Fu, Zhen Gao, Yaguang Gu and Peng Li*, High order well-balanced conservative finite difference AWENO scheme with hydrostatic reconstruction for the Euler equations under gravitational fields, Applied Numerical Mathematics, 180 (2022), pp. 1-15.

[4] Yaguang Gu, Zhen Gao*, Guanghui Hu, Peng Li and Lifeng Wang, High Order Finite Difference Alternative WENO Scheme for Multi-component Flows, Journal of Scientific Computing, 89 (2021), Article No. 52.

[3] Yaguang Gu and Felix Kwok*, On the Choice of Robin Parameters for the Optimized Schwarz Method for Domains with Non-conforming Heterogeneities, Journal of Scientific Computing, 89 (2021), Article No. 5

[2] Yaguang Gu, Zhen Gao*, Guanghui Hu, Peng Li, and Lifeng Wang, A Robust High Order Alternative WENO Scheme for the Five-Equation Model, Journal of Scientific Computing, 88 (2021), Article No. 12.

[1] Yaguang Gu and Guanghui Hu*, A Third Order Adaptive ADER Scheme for One Dimensional Conservation Laws, Communications in Computational Physics, 22 (2017), pp. 829-851.


  • 会议论文

[1] Yaguang Gu and Felix Kwok, Optimized Schwarz-based Nonlinear Preconditioning for Elliptic PDEs, Domain Decomposition Methods in Computational Science and Engineering XXV, Lecture Notes in Computational Science and Engineering, Springer, 138 (2020), pp. 260-267.


教学项目

  • 校级智慧课程(AI辅助课程)培育项目--线性代数与解析几何(参与,主持人:韩乐副教授)

  • AI赋能下的微积分混合式教学探索(参与,主持人:林鸿莺副教授)



已授课程

  • 2022-2023,第二学期:概率论与数理统计(本科生公共课)

  • 2023-2024,第一学期:线性代数与解析几何(本科生公共课)

  • 2024-2025,第一学期:线性代数与解析几何(本科生公共课)



  • 电子邮箱:guyaguang@scut.edu.cn

  • 办公室:华南理工大学(五山校区)4号楼数学学院4136房间