工作经历
教育背景
2002.09-2006.07 中国石油大学(华东) 信息与计算科学 学士
2007.09-2012.07 华南理工大学 应用数学 博士
量子群、Yangian代数的结构与表示理论

[19] N. Jing, M. Liu* and A. Molev, Quantum Sugawara operators in type A, Adv. Math.456 (2024), Paper No. 109907, 26 pp. 通讯作者
[18] N. Jing, M. Liu and A. Molev, Eigenvalues of quantum Gelfand invariants, J. Math.Phys. 65 (2024), no. 6, Paper No. 061703, 9 pp. 同等贡献
[17] X, Zhang, N. Jing, M. Liu and H. Ma, On monogamy and polygamy relations ofmultipartite systems , Physica Scripta Volume 98, Number 3 (2023).
[16] X, Zhang, N. Jing, H. Zhao, M. Liu and H. Ma, Improved tests of genuine entanglement for multiqudits , EPL Volume143, Issue3 (2023)
[15] X, Zhang, X. Wang, H. Ma, M. Liu and j. Xing, Tighter sum unitary uncertaintyrelation , Laser Physics Letters 34(2024) 125203, 7pp.
[14] N. Jing, X. Zhang and M. Liu, R-matrix presentation of quantum affine algebra intype A(2)2n−1, Front. Math. 18 (2023), no. 3, 513–564.
[13] N. Jing, M. Liu and A. Molev, Representations of quantum affine algebras in their Rmatrix realization, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020),Paper No. 145, 25 pp. 同等贡献
[12] N. Jing, F. Yang and M. Liu, Yangian doubles of classical types and their vertexrepresentations, J. Math. Phys. 61 (2020), no. 5, 051704, 39 pp.
[11] N. Jing, M. Liu* and A. Molev, Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: types B and D, SIGMA Symmetry IntegrabilityGeom. Methods Appl. 16 (2020), Paper No. 043, 49 pp. 通讯作者
[10] N. Jing, M. Liu* and A. Molev, Isomorphism between the R-matrix and Drinfeldpresentations of quantum affine algebra: type C, J. Math. Phys. 61 (2020), no. 3,031701, 41 pp. 通讯作者
[9] N. Jing and M. Liu, On fusion procedure for the two-parameter quantum algebra intype A, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 1, 15–29. 同等贡献
[8] N. Jing, M. Liu* and A. Molev, Isomorphism between the R-matrix and Drinfeldpresentations of Yangian in types B, C and D, Comm. Math. Phys. 361 (2018), no.3, 827–872. 通讯作者
[7] N. Jing and M. Liu*, R-matrix realization of two-parameter quantum affine algebraUr,s(bgln) , J. Algebra 488 (2017), 1–28. 通讯作者
[6] X. Gao, M. Liu, C. Bai and N. Jing, Rota-Baxter operators on Witt and Virasoroalgebras , J. Geom. Phys. 108 (2016), 1–20.
[5] N. Jing and M, Liu*, R-matrix realization of two-parameter quantum group Ur,s(gln), Commun. Math. Stat. 2 (2014), no. 3-4, 211–230. 通讯作者
[4] N. Jing, L. Zhang, and M, Liu, Wedge modules for two-parameter quantum groups ,Contemp. Math. 602, Amer. Math. Soc., Providence, RI, 2013.
[3] M. Liu, C. Bai, M. Ge and N, Jing, Generalized Bell states and principal realizationof the Yangian Y(slN) , J. Math. Phys. 54 (2013), no. 2, 021701, 11 pp. 第一作者
[2] N. Jing and M, Liu*, Isomorphism between two realizations of the Yangian Y (so3) ,J. Phys. A 46 (2013), no. 7, 075201, 12 pp. 通讯作者
[1] N. Jing and M, Liu*, Principal realization of twisted Yangian Y (gN ) , Lett. Math.Phys. 102 (2012), no. 1, 91–105. 通讯作者
电子邮箱: mamliu@scut.edu.cn
办公室: