•  教授

金海洋

发布时间:2025-09-25文章来源:华南理工大学数学学院浏览次数:26210

金海洋

个人简介

金海洋,1987年7月生,华南理工大学数学学院教授、博士生导师

工作经历

2020.9-至今华南理工大学数学学院
教授
2017.3-2020.8副教授
2016.9-2017.3讲师
2014.11-2016.8

博士后(合作导师:刘正荣教授)

教育经

2011.8-2014.10香港理工大学应用数学系博士导师:王治安教授
2009.9-2011.7武汉大学数学与统计学院硕士导师:赵会江教授
 2005.9-2009.8 华中师范大学数学与统计学院本科

主讲课程

《数学分析》、《线性代数与解析几何》、《概率论与数理统计》、《医用高等数学》、《数学分析习题选讲》、《激波理论初步》

主要研究方向:生物趋向性运动的数学理论、非线性偏微分方程及其应用

博士生、硕士生招生方向:应用数学

现主要研究内容:生态捕食系统中的趋食性运动、趋化模型解的适定性问题

科研获奖

[1] 2022年度广东省自然科学二等奖,成果名称:生物趋向性运动的数学理论;完成人:金海洋(华南理工大学)、刘锐(华南理工大学)

科研项目

[1] 国家自然科学基金-面上项目(12371203): 2024.1-2027.12,在研,主持

[2] 广东省自然科学基金-杰出青年项目(2022B1515020032): 2022.1-2025.12,在研,主持

[3] 广东省自然科学基金-面上项目(2020A1515010140): 2019.10-2022.10,已结题

[4] 广州市科技计划项目(202002030363): 2020.4-2023.3,已结题

[5] 国家自然科学基金-面上项目(11871226): 2019.1-2022.12,已结题

[6] 国家自然科学基金-青年基金项目(11501218):2016.1-2018.12,已结题

[7] 中国博士后科学基金-面上项目(2015M572302):2015.3-2016.9,已结题 

科研论文

[38]H.Y. Jin, K.-Y. Lam,and Z.A. Wang, Global dynamics of the toxicant-taxis model with Robin boundary conditions, Calc. Var. Partial Differential Equations, 2025. DOI:10.1007/s00526-025-03105-3.

[37]J. Chu and H.Y. JinGlobal dynamics of a three-species Lotka-Volterra food chain model with intraguild predation and taxis mechanisms. J. Nonlinear Sci. 35(3), Paper No. 56, 47 pp, 2025.CJ-2025-JNS.pdf

[36] H.Y. Jin and F. Zou, Boundedness criterion and global solvability for the three-species food chain model with taxis mechanisms. NoDEA Nonlinear Differential Equations Appl. 32(3), Paper No. 36, 33 pp, 2025. JZ-2025-NodeA.pdf

[35] H. Shu, H.Y. Jin X.S Wang and J. H. Wu, Viral infection dynamics with immune chemokines and CTL mobility modulated by the infected cell density. J. Math. Biol., 88(4) Paper No. 43, 34 pp, 2024.SJWW-JMB-2024.pdf

[34] H.Y. JinZ.A. Wang and L. Wu,Global solvability and stability of an alarm-taxis system. SIAM J. Math. Anal.,  55(4):2838-2876, 2023JWW-SIMA-2023.pdf.

[33] H.Y. Jin and F. Zou*, Nonlinear stability of traveling waves to a parabolic-hyperbolic system modeling chemotaxis with periodic perturbations.  J. Differential Equations, 352:23-66, 2023.JZ-JDE-2023.pdf

[32] H.Y. Jin, G. Lu and F. Zou*, Qualitative properties for a three-species food chain model with cross-diffusion and intra-specific competition. Discrete Contin. Dyn. Syst. Ser. B., 28(10):5244-5268, 2023JLZ-DCDSB-2023.pdf.  

[31] H.Y. Jin and K. XuBoundedness of a chemotaxis-convection model describing tumor-induced angiogenesis. Acta Math. Sci. Ser. B (Engl. Ed.) 43(1):156-168, 2023.JX-AMS-2023.pdf

 [30] J. Chu, H.Y. Jin  and T. Xiang, Global dynamics in a chemotaxis model describing tumor angiogenesis with/without mitosis in any dimension. Commun. Math. Sci., 21(4):1055-1095, 2023.CJX-CMS-2023.pdf

[29] J. Chu and H.Y. Jin*, Predator-prey systems with defense switching and density-suppressed dispersal strategy. Math. Biosci. Eng. 19(12):12472-12499, 2022. CJ-MBE-2022.pdf

[28] H.Y. JinZ.A. Wang and L. Wu, Global dynamics of a three-species spatial food chain model. J. Differential Equations, 333:144-183, 2022.JWL-JDE-2022.pdf

[27] J. Chu, H.Y. Jin* and L. Xiong, Global dynamics of a tumor invasion model with/without logistic source. Z. Angew. Math. Phys. 72:181, 2021.CJX-ZAMP-2021.pdf

[26]  H.Y. Jin and T. Xiang,  Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model.  Math. Models Methods Appl. Sci., 31(7):1373-1417, 2021.   JX-M3AS-2021.pdf

[25]  H.Y. Jin and Z.A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. Euro. J. Appl. Math., 32:652-682, 2021. JW-EJAM2021.pdf

[24]  H.Y. Jin and J. Xu,  Analysis of the role of convection in a system describing the tumor-induced angiogenesis. Commun. Math. Sci., 19(4):1033-1049,2021.JX-CMS-2021.pdf

[23]  H.Y. Jin and Z.A. Wang, The Keller-Segel system with logistic growth and signal-dependent motility. Discrete Contin. Dyn. Syst. Ser. B. 26(6):3023-3041, 2021.   Jin-Wang-DCDSB-2021.pdf

[22]  H.Y. Jin, S. Shi and Z.A. Wang, Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility. J. Differential Equations, 269:6758-6793, 2020. JSW-DSM-JDE.pdf

[21]  H.Y. Jin and Z.A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility. Proc. Amer. Math. Soc., 148:4855-4873, 2020.Jin-Wang-PAMS-2020.pdf

[20]  H.Y. Jin and Z.A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system.  Discrete Contin. Dyn. Syst. Ser. A.  40(6):3509-3527, 2020. Jin-Wang-DCDSA-2020.pdf

[19]  H.Y. Jin, Z. Liu, S. Shi and J. Xu, Boundedness  and stabilization in two-species chemotaxis-competition system with signal-dependent diffusion and sensitivity. J. Differential Equations, 267:494-524,2019. JLSX-JDE-2019.pdf

[18]  H.Y. Jin and T. Xiang, Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics. Discrete Contin. Dyn. Syst. Ser. B, 24(4):1919-1942, 2019.JX-CDDSB-2019.pdf

[17]  H.Y. Jin and T. Xiang, Chemotaxis effect vs logistic damping on boundedness in the 2-D minimal Keller-Segel  model. C. R. Math. Acad. Sci. Paris.,  356:875-885, 2018.JX-CRM-2018.pdf

[16]  H.Y. Jin, Y.J. Kim and Z.A. Wang, Boundedness, stabilization and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math.,  78(3):1632-1657, 2018.Jin-Wang-SIAM-2018.pdf

[15]  H.Y. Jin, Boundedness and large time behavior in a two-dimensional Keller-Segel-Navier-Stokes system wtih signal-dependent diffusion. Discrete Contin. Dyn. Syst. Ser. A, 38(7):3595-3616, 2018.J-DCDSA-2018.pdf

[14]  H.Y. Jin, Z. Liu and S. Shi, Global dynamics of a quasilinear chemotaxis model arising from tumor invasion. Nonlinear Anal. Real World Appl., 44:18-39, 2018. JLS-NA-2018.pdf

[13]  H.Y. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete Contin. Dyn. Syst. Ser. B, 23(8):3071-3085,2018.JX-DCDSB1-2018.pdf

[12]  H.Y. Jin and Z.A. Wang, A dual-gradient chemotaxis system modeling the spontaneous aggregation of microglia in Alzheimer's disease. Anal. Appl., 16(3): 307-338, 2018.JW-AA-2018.pdf

[11]  L.L. Fan and H.Y. Jin*,  Global existence and asymptotic behavior to a chemotaxis system with consumption of chemoattractant in higher dimensions. J. Math.Phys., 58(1), 011503, 2017.FJ-JMP-2017.pdf

[10]  H.Y. Jin, Z. Liu and S. Shi, Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinet. Relat. Models, 10(3):855-878, 2017.SLJ-KRM-2017.pdf

[9]  H.Y. Jin and Z.A. Wang, Global stability of prey-taxis systems. J. Differential Equations, 262(3):1257-1290, 2017. JW-JDE-2017.pdf

[8]  H.Y. Jin and Z. LiuGlobal dynamics of the Boussinesq-Burgers system with large initial data. Math. Methods Appl. Sci.,39(18):5732-5743, 2016.JL-M2AS-2016.pdf

[7]  H.Y. Jin and T. Xiang, Boundedness and exponential convergence in a chemotaxis model for tumor invasion. Nonlinearity, 29:3579-3596, 2016.JX-Nonlinearity-2016.pdf

[6]  H.Y. Jin and Z.A. Wang,  Boundedness, blowup and critical mass phenomenon in competing   chemotaxis. J. Differential Equations, 260(1): 162-196,2016.JW-JDE-2016.pdf

[5]  H.Y. Jin and Z. Liu, Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space. Appl. Math. Lett., 47:13-20,2015.JL-APL-2015.pdf

[4]  H.Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system. J. Math. Anal. Appl., 422(2):1463–1478,2015.J-JMAA-2015.pdf

[3]  H.Y. Jin, Z.A. Wang and L. Xiong, Cauchy problem of the magnetohydrodynamic Burgers system. Commun. Math. Sci., 13(1):127-151, 2015.JWX-CMS-2015.pdf

[2]  H.Y. Jin and Z.A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model. Math. Methods Appl. Sci.,38(3):444-457,2015.JW-M2AS-2015.pdf

[1]  H.Y. Jin, J. Li and  Z.A. Wang, Asymptotic stability of traveling waves of a chemotaxis model    with singular sensitivity.  J. Differential Equations, 255(2):193-219, 2013.JLW-JDE-2013.pdf


mahyjin@scut.edu.cn

数学学院4216