•  教授

杨启贵

发布时间:2017-12-27文章来源:华南理工大学数学学院浏览次数:5076

杨启贵

一、简历
  
杨启贵,男,教授,博士生导师;
1995年重庆大学硕士研究生毕业,获应用数学专业理学硕士学位;1995年至2004年在广西师范大学任教,其中2002年中山大学博士研究生毕业,获应用数学专业理学博士学位;2002年至2004年在清华大学做博士后研究工作;2004年至今在华南理工大学任教。1999年破格副教授,2000年被遴选为硕士生导师,2002年晋升为教授,2006被遴选为博士生导师。2006年被评为广东省“千百十”工程省级培养对象。
2002
年至今为美国
Mathematical Reviews评论员,曾任全国非线性振动专业委员会委员,现兼全国初等数学研究会第二届常务理事、广州市工业与应用数学会副理事长、《中国初等数学研究》编委。

二、教学和指导研究生情况
  
长期从事常微分方程和混沌动力学领域的教学与科研工作。主讲了《非线性动力系统》、《动力系统引论》、《分支与混沌》、《微分方程定性理论》、《动力系统稳定性与分支理论》、《常微分方程》、《数学分析》等研究生和本科课程。
2002年获得广西高校教育教学优秀论文二等奖(独立)20072008年度华南理工大学校级教学优秀二等奖, 2010年分别获华南理工大学教学成果二等奖(排名:1)、一等奖(排名:2)、第六届广东省高等教育省级教学成果二等奖(排名:2)各1项,2013年获华南理工大学教学成果一等奖1项(排名:2)。主持完成华南理工大学教育技术研究项目“《微分方程及其应用》信息技术教学应用优质示范课程”和一项研究生重点建设项目《分支与混沌引论》课程。

   已招收博士后合作研究人员3人(已出站1人),博士研究生16人(已获学位8人,在读8人),硕士研究生28人(已获学位或直接攻博,在读9人),其中2人博士学位论文获广东省优秀博士学位论文。1人硕士论文获广东省优秀硕士学位论文。

微分方程及动力系统、经济与混沌动力系统、随机动力系统及其应用

  

三、科研获奖

2011年,第二届南粤科技创新优秀学术论文二等奖(排名1

2006年,广东省“千百十工程”第四批省级培养对象

2005年,广西科技进步一等奖(排名11/4

1999年,广西高校科技进步三等奖(独立)

  

四、主持科研项目

先后主持完成国家自然科学基金和省部级项目课题等10余项:

  

10.高维动力系统复杂性与混沌机制研究,国家自然科学基金(在研)

9. 确定混沌与随机混沌系统复杂性研究,国家自然科学基金(已结题)

8.确定混沌与随机混沌系统动力学研究,广东省自然科学基金(已结题)

7.基于超混沌理论的移动通信信息安全研究,广东省科技攻关项目校方主持(已结题)

6.矩阵微分系统与非线性混沌系统的复杂性研究, 国家自然科学基金项目(已结题)

5.混沌与超混沌系统复杂性的定性研究,国家自然科学基金项目(已结题)

4.矩阵微分系统的振动性与非线性混沌系统的研究,博士后科学基金(已结题)

3.微分系统振动与混沌复杂性的研究和应用,广东省自然科学基金(已结题)

2.非线性微分系统轨线定性研究与应用,广西省自然科学基金(已结题)

1.吸引子结构及其在种群均衡中应用,广西省自然科学基金(已结题)

  

五、发表论文情况

  至今为止在国内外重要学术刊物发表论文84篇,包括在国际重要学术刊物J. Differential EquationsChaosProc. Roy. Soc. Edinburgh Sect. A、 Int J Bifur ChaosNonlinear Dynamics20多种刊物发表2Tutorial-Review论文和68篇学术论文,在国内重要学术刊物数学学报、应用数学学报、Chinese Physics B20多种学术刊物发表学术论文24篇,其中被SCI收录72篇,SCI正面他引近610次。

  

近年论文清单如下:

   

2017(3)

1.杨启贵*,白美丽,A new 5D hyperchaotic system based on   modified generalized Lorenz systemNonlinear   Dynamics

2.尹宗斌,杨启贵*Distributionally n-Scrambled Set for   Weighted Shift OperatorsJournal   Of Dynamical and Control Systems

3.杨启贵*,朱平,Stepanov-like doubly weighted pseudo   almostautomorphic processes and its   application to Sobolev-type stochastic differentialequations driven by G-Brownian motionMathematical Methods in the Applied   Sciences

2016(3)

1.曾才斌,杨启贵*,陈阳泉,Bifurcation Dynamics of The Tempered   Fractional Langevin EquationChaos

2.尹宗斌,杨启贵*Generic Distributional Chaos and Principal   Measure in Linear DynamicsAnnales   Polonici Mathematici

3.泽山,袁利国,杨启贵*Chaos And Combination Synchronization Of A   New Fractional-Order System With Two Stable Node-FociIeee/Caa Journal of Automatica Sinica

2015(5)

1.曾才斌,杨启贵*Dynamics of the stochastic Lorenz chaotic   system with long memory effectsChaos

2.尹宗斌,杨启贵*Distributionally scrambled set for an   annihilation operatorInternational   Journal of Bifurcation and Chaos

2014(5)

1.Q. YangY.   Chen, Complex dynamics of unified Lorenz-type systems, Inter. J. Bifur. Chaos   2014, 24(4): 24: 4(2014)1450055   (30 pages)

2.Y. Chen, Q. Yang*. Dynamics of a hyperchaotic Lorenz-type   system, Nonlinear Dyn 77: 3(2014), 569-581. (通讯作者)

3.Jianghong BaoQigui   YangDarboux integrability ofthe   stretch-twist-fold flow   Apll. Math. Comput 229(2014), 16-26.

4.Jianghong BaoQigui   YangDarboux integrability of   the stretch-twist-fold flow, Nonlinear Dyn, 76: 1(2014), 797-807.

5.Caibin Zeng, Qigui Yang, and Junfei Cao. Variational solutions   and random dynamical systems to SPDEs perturbed by fractional Gaussian The   Scientific World Journal. 2014, Article ID 601327, 7 pages   http://dx.doi.org/10.1155/2014/601327

2013(5)

1.Q. Yang, C. Zeng, C. Wang,   Fractional noise destroys or induces a stochastic bifurcation, Chaos. 232013):043120 (5 pages).

2.Q. Yang. Chen, A 5D hyperchaotic   system with three positive Lyapunov exponents coined, Inter. J. Bifur. Chaos   2013, 23( 6): 1350109 (24 pages).

3.C. Zeng, Y. Chen, Q. Yang,   Almost sure and moment stability properties of fractional order Black-Scholes   model, Fra. Calc. Appl. Anal. 2013, 16(2): 317-331

4.Yuming Chen, Qigui Yang*,   The nonequivalence and dimension formula for attractors of Lorenz-type   systems, Inter. J. Bifur. Chaos, 23:12(2013): 1350200 (12pages) (通讯作者)

5.LiguoYuan, Qigui Yang,   Caibin Zeng. Chaos detection and parameter identification in fractional-order   chaotic systems with delay. Nonlinear Dyn 73(2013):439448

2012(9)

1.Li-Guo Yuan, Qi-Gui Yang*,   Parameter identification and synchronization of fractional-order chaotic   systems, Commun Nonlinear Sci Numer Simulat 17 (2012) 305316 (通讯作者)

2.Junfei Cao, Qigui Yang*,   Zaitang Huang, Existence of anti-periodic mild solutions for a class of   semilinear fractional differential equations, Commun Nonlinear Sci Numer   Simulat 17 (2012) 277283   (通讯作者)

3.Junfei Cao, Qigui Yang*,   Zaitang Huang, On almost periodic mild solutions for stochastic functional   differential equations, Nonlinear Analysis Series B: Real World Applications,   13 (2012) 275286 (通讯作者)

4.Zeng, CB; Yang, Qigui;   Chen, YQ. Solving nonlinear stochastic differential equations with fractional   Brownian motion using reducibility approach, Nonlinear Dynamics, 64:4(2012),   2719-2726.

5.Guirong Jiang, Qigui Yang*,   Complex dynamics of a linear Hamiltonian system under impulsive control, Int J   Bifur Chaos,22: 3(2012), 1250076 (16pages)(通讯作者)

6.Wei Zhouchao; Yang Qigui.   Dynamical analysis of the generalized Sprott C system with only two stable   equilibria. Nonlinear Dynamics, 68: 4(2012), 543-554.

7.Zeng Caibin; Chen YangQuan;   Yang Qigui. The fBm-driven Ornstein-Uhlenbeck process: Probability density   function and anomalous diffusion. FRACTIONAL CALCULUS AND APPLIED ANALYSIS,   15: 3(2012), 479-492.

8.Bao Jianghong; Yang Qigui.   Period of the discrete Arnold cat map and general cat mapNonlinear Dynamics, 702(2012), 1365-1375.

9.Qigui Yang, Guirong Jiang,   Tianshou Zhou. Chaotification of linear implusive differential systems with   applications. Int J Bifur Chaos, 22 :12(2012), 1250297 (12 pages).

2011(11)

1.Junfei Cao, Qigui Yang*,   Zai-Tang Huang. Optimal mild solutions and weighted pseudo-almost periodic   classical solutions of fractional integro-differential equations, Nonlinear   Analysis: Theory, Method and Applications, 74 : 1(2011), 224-234 (SCI) (通讯作者)

2.Zhouchao Wei, Qigui Yang,   Dynamical analysis of a new autonomous 3-D chaotic system only with stable   equilibria, Nonlinear Analysis: Real World Applications, 12: 1(2011), 106-118   (SCI)

3.Zai-Tang Huang, Qigui   Yang*, A stochastic model for interactions of hot gases with cloud droplets   and raindrops, Nonlinear Analysis: Real World Applications, 12: 1(2011),   203-214 (通讯作者)

4.Jianghong Bao, Qigui Yang,   A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput.,   217(2011), 6526-6540.

5.Zai-Tang Huang, Qigui   Yang*, Cao Junfei. Stochastic stability and bifurcation analysis on Hopfield   neural networks with noise, Expert Systems With Applications, 38 (2011) 1043710445. (通讯作者)

6.Junfei Cao, Qigui Yang*,   Zaitang Huang, Existence and exponential stability of almost automorphic mild   solutions for stochastic functional differential equations, Stochastics,   83(2011), 259-275. (通讯作者)

7.Zaitang Huang, Qigui Yang*,   Junfei Cao, Stochastic stability and bifurcation for the chronic state in   Marchuks model with noise, Appl.   Math. Modell. 35 (2011) 58425855.(通讯作者)

8.Zeng, C,. Yang, Q.J. Wang, Chaos and mixed   synchronization of a new fractional-order system with one saddle and two   stable node-foci, Nonlinear Dynamics, 65: 4 (2011), 457-466.

9.Junfei Cao, Qigui Yang*,   Zaitang Huang, Qing Liu, Asymptotically almost periodic solutions of   stochastic functional differential equations, Appl. Math. Comput. 218 (2011)   1499 1511.(通讯作者)

10.Zaitang Huang, Qigui Yang,   Junfei Cao, The stochastic stability and bifurcation behavior of Internet   congestion control model, Mathematical and Computer Modelling, 54:   9-10(2011), 1954-1965.

11.Yongjian Liu, Qigui   Yang, Dynamics of the Lu system on the invariant algebraic surface and at   infinity, Int J Bifur Chaos, 21:9(2011), 2559-2582

2010(9)

1.Qigui Yang, Zhouchao Wei, Chen Guanrong, An unusual 3D   autonomous quadratic chaotic sysytem with two stable node-foci, Int J Bifur   Chaos, 20: 4(2010), 10611083.

2.Zai-Tang Huang, Qigui Yang, Exponential stability of impulsive   high-order cellular neural networks with time-varying delays, Nonlinear   Analysis: Real World Applications, 11(2010), 592-600

3.Yongjian Liu, Qigui Yang*, Dynamics of a new Lorenz-like   chaotic system, Nonlinear Analysis: Real World Applications, 11 (2010) 25632572. (SCI) (通讯作者)

4.Liu Yongjian, Qigui Yang, Guoping Peng, A hyperchaotic system   from the Rabinovich s ystem, Journal of Computational and Applied Mathematics   234 (2010) 101113.

5.Yang, Q., Zeng, C., Chaos in fractional conjugate Lorenz   system and its scaling attractors, Communications in Nonlinear Science and   Numerical Simulation 15 (2010) 40414051.

6.Zeng, C,. Yang, Q., A fractional order HIV internal viral   dynamics model, Computer Modeling in Engineering & Sciences, 59: 1(2010),   65-78.

7.Zhouchao Wei, Qigui Yang*, Anti-control of Hopf bifurcation in   the new chaotic system with two stable node-foci, Appl Math Comput., 217   (2010) 422429. (通讯作者)

8.Jianghong Bao, Qigui Yang, Complex dynamics in the   stretch-twist-fold flow, Nonlinear Dynamics, 61(2010), 773781.

9.Z hang Kangming, Qigui Yang*, Hopf bifurcation analysis in a   4D-hyperchaotic system, J. System Sci. and Complexity, 23: 4(2010), 748-758.

  

qgyang@scut.edu.cn

华南理工大学4号楼