岗位:副教授

邮箱:xinweichen@scut.edu.cn

个人简介

陈新蔚博士本科和博士先后毕业于华南理工大学和加拿大纽芬兰纪念大学,在加拿大滑铁卢大学从事博士后研究工作。陈新蔚博士长期从事海洋智能感知领域相关的研究,主要包括:(1)基于多源卫星数据的海冰参数提取;(2)基于于计算机视觉和深度学习技术的海上目标检测;(3)基于船载和岸基于雷达图像的海表面信息感知。基于于研究方向,已发表SCI、EI论文近30篇,包括10余篇第一/通讯作者JCR一区论文,获得“Kenneth Hickey海洋感知奖”、“国家优秀自费留学生奖学金”、“IEEE研究生奖学金”等荣誉。同时,主持加拿大Mitacs科研项目2项,带领团队获得欧洲航天局海冰挑战竞赛冠军,作为科研骨干参与加拿大自然科学和工程研究理事会、环境及气候变化部、渔业和海洋部的多个项目。研究成果为海洋和极地的科学研究和人为活动提供了重要数据支撑。团队长期招收博士后研究员、博士生、硕士生及科研助理,欢迎有意向加入的优秀人才联系与咨询。

研究方向

  • 海洋智能感知、海冰遥感、海洋信息工程、海洋大数据分析、机器学习

教育和工作经历

教育经历:

  • 2017.09 - 2021.10, 加拿大纽芬兰纪念大学,电气工程,博士

  • 2013.09 - 2017.06,华南理工大学,信息工程,本科

工作经历:

  • 2024.01 - 至今,华南理工大学,海洋科学与工程学院,副教授,硕士/博士生导师

  • 2021.10 - 2023.12,加拿大滑铁卢大学,视觉和图像处理实验室,博士后

主要科研成果

部分代表论文:

  • X. Chen, R. Valencia, A. Soleymani, and K. A. Scott“Predicting Sea Ice Concentration With Uncertainty Quantification Using Passive Microwave and Reanalysis Data: A Case Study in Bffin Bay,”IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1-13, 2023, Art no. 4300213, 2023.

  • X. Chen, K. A. Scott, L. Xu, M. Jiang, Y. Fang, and D. A. Clausi“Uncertainty-Incorporated Ice and Open Water Detection on Dual-polarized SAR Sea Ice Imagery,”IEEE Trans. Geosci. Remote Sens., vol. 61, article sequence 5201213, 2023.

  • X. Chen, M. Patel, F. Pena Cantu, J. Park, J. Noa Turnes, L. Xu, K. A. Scott, and D. A. Clausi “MMSeaIce: Multi-task Mapping of Sea Ice Parameters from AI4Arctic Sea Ice Challenge Dataset,” EGUsphere, [preprint], https://doi.org/10.5194/egusphere-2023-1297, 2023.

  • X. Chen, M. Patel, L. Xu, Y. Chen, K. A. Scott, and D. A. Clausi “Weakly Supervised Learning for Pixel-Level Sea Ice Concentration Extraction Using AI4Arctic Sea Ice Challenge Dataset,” IEEE Geosci. Remote Sens. Lett., vol. 21, Art no. 1500205, 2023.

  • X. Chen, R. Valencia, A. Soleymani, L. Xu, and K. A. Scott “Calibration of Uncertainty in Sea Ice Concentration Retrieval with an Auxiliary Prediction Interval Estimator,” IEEE Geosci. Remote Sens. Lett., vol. 20, Art no. 1503705, 2023

  • X. Chen and W. Huang,“Spatial-temporal convolutional gated recurrent unit network for significant wave height estimation from shipborne marine radar data,”IEEE Trans. Geosci. Remote Sens., vol. 60, article sequence 4201711, 2022.

  • X. Chen, W. Huang, and M. Haller, “A novel scheme for extracting sea surface wind information from rain-contaminated X-band marine radar images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 5220-5234, 2021.

  • X. Chen, W. Huang, M. Haller and R. Pittman, “Rain-contaminated region segmentation of X-band marine radar images with an ensemble of SegNets,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 141-154, 2021.

  • X. Chen and W. Huang,“Identification of rain and low-backscatter regions in X-band marine radar images: an unsupervised approach,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 6, pp. 4225-4236, 2020.

  • X. Chen, W. Huang, C. Zhao, and Y. Tian,“Rain detection from X-band marine radar images: a support vector machine-based approach,”IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3, pp. 2115-2123, 2020.

2022 © 华南理工大学海洋科学与工程学院版权所有 粤ICP备05084312号 School of Marine Science and Engineering, Guangzhou International Campus, SCUT. ALL Rights Reserved