《密码学与安全协议》教学大纲

课程代码

045101921

课程名称

密码学与安全协议

英文名称

Cryptography and Security Protocol (MOOC)

课程类别

专业基础课

选修课

课程性质

必修

选修

学时

总学时:48 实验学时:16 实习学时:其他学时:

学分

2.5

开课学期

第五学期

开课单位

计算机科学与工程学院

适用专业

信息安全 网络工程

授课语言

中文授课

先修课程

计算机网络、信息安全数学基础

课程对毕业要求的支撑

本课程对学生达到如下毕业要求有如下贡献:

1.设计/开发解决方案:能够设计针对信息安全复杂工程问题的解决方案,设计满足特定需求的信息安全解决方案,并能够在设计环节中体现创新意识,考虑社会、健康、安全、法律、文化以及环境等因素。

2.研究:能够基于科学原理并采用科学方法对信息安全复杂工程问题进行研究,包括设计实验、分析与解释数据、并通过信息综合得到合理有效的结论。

3.使用现代工具:能够针对信息安全复杂工程问题,开发、选择与使用恰当的技术、资源、现代工具和信息技术工具,包括对信息安全复杂工程问题的预测与模拟,并能够理解其局限性。

4.工程与社会:能够基于信息安全工程相关背景知识进行合理分析,评价信息安全专业工程实践和复杂工程问题解决方案对社会、健康、安全、法律以及文化的影响,并理解应承担的责任。

课程目标

完成课程后,学生将具备以下能力:

1)掌握密码学与安全协议的基础知识,培养学生发现问题、解决问题的基本能力。[12

2)掌握密码学与安全协议的基本技能,学生具有信息安全初步实践能力。[34

课程简介

本课程介绍了密码学与安全协议相关的基础知识和技术方法。系统讲授了网络安全通信、网络安全协议和网络安全实现的基本原理、方法和策略。

本课程由两部分构成。第一部分网络安全通信从传统密码理论、公钥密码理论详细讨论了网络安全通信实现的原理,涉及到点到点加密传输、端到端加密传输、消息认证码、Hash函数以及数字签名和公钥证书等内容。第二部分网络安全实现讨论了重要的网络安全工具和应用软件,包括鉴别应用、电子邮件的安全性、IP的安全性和Web安全。

教学内容与学时分配



序号

课程内容

学时

1

引言

2

2

常规加密的经典技术

3

3

常规加密的现代技术

3

4

常规加密的算法

4

5

使用常规加密进行保密通信

3

6

公开密钥密码编码学

4

7

报文鉴别与散列函数

4

8

散列算法

3

9

数字签名和鉴别协议

4

10

鉴别应用

4

11

电子邮件的安全性

3

12

IP的安全性

4

13

Web安全

4



(一)引言

学时数:2学时

主要内容:对本课程的基本说明,包括计算机和网络的安全威胁、OSI安全框架、网络安全模型

重点:计算机网络安全的目标,信息安全和网络安全,网络通信安全模型,网络访问安全模型,通道模式,网关模式

难点:OSI安全框架,网络通信安全模型,网络访问安全模型

要求:了解网络安全面临的安全威胁,掌握OSIX.800安全框架和网络安全模型


(二)常规加密的经典技术

学时数:3学时

主要内容:对传统加密技术进行介绍,包括密码学发展史、经典加密技术和术语、代换技术、置换技术、转子机

重点:加密算法的安全性,对称加密的两个重要因素,针对数据加密的攻击手段,一次一密的无条件安全及缺陷,代换技术,置换技术,转子机,信息隐藏的原理,DES三种工作模式ECBCBCCTR

难点:加密算法的安全性, CBCECBn位的代换分组密码

要求:了解对称加密的主要概念,理解代换技术、置换技术和转子机的原理和操作


(三)常规加密的现代技术

学时数:3学时

主要内容:对分组密码和数据加密标准进行介绍,包括分组密码与Feistel密码、数据加密标准DES及其设计原理、密码分析和工作模式

重点:ShannonFeistel的贡献,扩散和混乱,雪崩效应,S-DESCBC

难点:扩散和混乱,雪崩效应,S-DES算法

要求:了解分组密码和数据加密标准,理解分组密码的设计原理,掌握数据加密标准一般结构和加密解密过程


(四)常规加密的算法

学时数:4学时

主要内容:对现代对称加密技术进行介绍,包括三重DESBlowfishRC5、流密码

重点:中间相遇攻击,双重DES,三重DES的安全强度

难点:双重DES算法,三重DES算法

要求:了解现代对称加密技术,理解主要现代对称密码的工作原理


(五)使用常规加密进行保密通信

学时数:3学时

主要内容:对现代对称加密技术的传输安全性进行介绍,包括加密设置、密钥分配及随机数的产生

重点:链路加密,端到端加密,安全性分析,集中式密钥分配方案KDC,密钥分配的层次性,随机数的产生

难点:集中式密钥分配方案KDC,链路加密与端对端加密

要求:了解现代对称加密技术的传输安全性,理解密钥分配的过程和随机数的生成原理


(六)公开密钥密码编码学

学时数:4学时

主要内容:对公钥密码体系进行介绍,包括其数学原理和RSA算法

重点:公钥加密(非对称加密)模型,RSA公钥加密算法,Diffie-Hellman密钥交换算法,数字证书,公钥密码的分发

难点:公钥加密与公钥认证,Fermat定理,Euler函数,Euler定理,RSA的加解密,RSA的计算效率与安全性,基于公钥的密钥分配,

要求:了解公钥密码体制,理解公钥密码的基本原理,掌握RSA算法和Diffie-Hellman密钥交换算法


(七)报文鉴别与散列函数

学时数:4学时

主要内容:对消息认证进行介绍,包括消息加密、消息认证码和散列函数

重点:消息认证的实现,三种认证函数及其异同,消息认证码MAC的一种实现方式,实现消息机密性、完整性和不可否认行的方案

难点:三种认证函数及其异同, MAC的实现

要求:了解消息认证的实现,理解消息认证码MAC的实现


(八)散列算法

学时数:3学时

主要内容:对散列算法进行介绍

重点:散列函数的特点,Hash函数的通用结构,MD5算法

难点:MD5算法的步骤,压缩函数和安全性

要求:了解散列函数的通用结构,理解MD5算法的步骤、压缩函数和安全性


(九)数字签名和鉴别协议

学时数:4学时

主要内容:对数字签名和认证协议进行介绍,包括其主要概念、特征和分类

重点:直接数字签名与仲裁数字签名,认证和交换协议,重放攻击

难点:数字签名的主要内容和作用,重放攻击的对策

要求:了解数字签名的特征、需求和分类,理解认证协议的主要过程


(十)鉴别应用

学时数:4学时

主要内容:对认证应用进行介绍,包括KerberosX.509

重点:KerberosX.509Kerberos架构和实现过程,CA证书的主要内容,数字签名的验证,X.509层次结构

难点:CA层次,Kerberos图形化认证过程

要求:了解认证应用,理解KerberosX.509的认证过程


(十一)电子邮件的安全性

学时数:3学时

主要内容:对电子邮件的安全性进行介绍,包括PGPS/MIME和安全电子邮件的邮件配置

重点:PGP机密性、完整性和不可否认性解决方案,S/MIME,电子邮件安全配置

难点:PGP加密与认证

要求:了解电子邮件的安全性,理解PGPS/MIME协议


(十二)IP的安全性

学时数:4学时

主要内容:对网络层上的安全性进行介绍,包括其通信协议、操作模式和密钥交换管理协议

重点:IPSec的应用及优点,AH协议,ESP协议,传输方式,隧道方式,密钥交换管理协议IKE

难点:IPSec协议,传输方式与隧道方式

要求:了解网络层安全协议的原理,理解IPSec的工作原理


(十三)Web安全性

学时数:4学时

主要内容:对Web安全性进行介绍,包括SSL/TLSSET

重点:SSL(安全套接层),SSL连接和SSL会话,SSL记录协议,SSL握手协议,TLS(传输层安全),SET(安全电子交易)

难点:SSL中记录协议的操作、握手协议的流程,SET中的双向签名、数字信封加密技术

要求:了解传输层和应用层安全协议的原理,理解SSLSET的工作原理

实验教学(包括上机学时、实验学时、实践学时)

教学方法

课程教学以课堂教学、实验教学、综合讨论、网络以及授课教师的科研项目于积累等共同实施。

考核方式

本课程注重过程考核,成绩比例为:

平时作业和课堂表现:30%

期末考试(闭卷):70%

教材及参考书

 Stinson D R. 密码学原理与实践: 第二版[M]. 电子工业出版社, 2003.

 William Stallings,  密码编码学与网络安全原理与实践, 2015, 电子工业出版社.

制定人及制定时间

许勇   2019.4.1

 “Cryptography and Security Protocol (MOOC)” Syllabus

Course Code

045101921

Course Title

Cryptography and Security Protocol (MOOC)

Course Category

 Specialty Basic Courses

Elective Courses

Course Nature

 Compulsory Course

Elective Course

Class Hours

48

Credits

2.5

Semester

5th

Institute

School of Computer Science and Engineering

Program Oriented

Information Security, Network Engineering

Teaching Language

Chinese

Prerequisites

Computer Networks, Mathematical Fundamentals for Information Security

 Student Outcomes

 (Special Training Ability)

 1. Designing and Developing Solutions: with the ability to design the solutions to complex and specific engineering problems in information security, to have an innovative sense in the design phase by considering the factors of society, health, safety, law and culture.

 2. Research: with the ability to conduct investigations on the complex engineering problems based on scientific principles and adopting scientific methods, including the experiment designs, analyzing and interpretation of data, and to obtain valid conclusions by information synthesis.

 3. Applying the Modern Tools: with the ability to develop, select and use the appropriate techniques, resources, and modern tools and IT tools, including prediction and simulation, to solve the complex engineering activities in information security and understand the limitations.

4. Engineering and Society: with the ability to reasonably analyze and evaluate the impacts of professional engineering practice and solutions to the complex engineering problems to society, health, safety, law and culture issues by using the background knowledge of information security engineering, to understand the consequent responsibility.

Course Objectives

 After teaching, students have the following abilities

1Understanding the fundamental knowledge of the cryptography and security protocols, make the students have the ability to design the solutions to complex and specific engineering problems in information security.

2Understanding the basic technologies of the cryptography and security protocols,make the students have the ability to solve the complex engineering activities in information security.

Course Description

 This course introduces the fundamental knowledge and technology of the cryptography and security protocols, including the principles, methods and policies of network security communication, network security protocols and network security implements.

This course consists of two parts. The first part is network security communication. Based on conventional cryptosystem and public-key cryptosystem, the principles of network security implements are discussed, which includes link to link encryption, end to end encryption, MAC, Hash function, digital signature and digital certificate. In the second part, the important network security tools and application of network security implements are discussed, which include authentication, email security, IP security and web security.

Teaching Content and Class Hours Distribution


Teaching Content

Class Hours

1

Introduction

2

2

Conventional cryptosystem

3

3

Modern cryptosystem

3

4

Conventional cryptosystem algorithm

4

5

Network security communication

3

6

Public-key cryptosystem

4

7

Message authentication and Hash Functions

4

8

Hash algorithm

3

9

Digital signature and authentication protocol

4

10

Authentication applications

4

11

Email security

3

12

IP security

4

13

Web security

4


 (1)Introduction

 Credit hours:  2 hours

 Contents: The basic description of this course, including computer and network security threats, OSI security framework, network security model

 Key points: computer network security goals, information security and network security, network communication security model, network access security model, channel mode, gateway mode

 Difficulty points: OSI security framework, network communication security model, network access security model

 Requirements: Understand the security threats to network security, master OSI's X.800 security framework and network security model


 (2)Conventional cryptosystem

 Credit hours:  3 hours

 Contents: Introduction to traditional encryption technology, including the history of cryptography, classical encryption technology and terminology, substitution technology, replacement technology, the rotor machine

 Key points: the security of encryption algorithm, two important factors of symmetric encryption, the means of data encryption, one-time unconditional security and defects, substitution technology, replacement technology, rotor machine, information hiding principle, ECB, CBC and CTR

 Difficulty points: the security of the encryption algorithm, CBC and ECB, n-bit substitution block password

 Requirements: Understand the main concepts of symmetric encryption, understand the replacement technology, replacement technology and the principle and operation of the rotor


 (3)Modern cryptosystem

 Credit hours:  3 hours

 Contents: Introduce the block cipher and data encryption standard, including block cipher and Feistel password, data encryption standard DES and its design principle, password analysis and working mode

 Key points: Shannon and Feistel's contribution, diffusion and chaos, avalanche effect, S-DES, CBC

 Difficulty points: Diffusion and chaos, avalanche effect, S-DES algorithm

 Requirements: Understanding packet passwords and data encryption standards, understanding the design principles of block cipher, mastering general structure and encryption and decryption process of data encryption standards


 (4)Conventional encryption algorithm

 Credit hours:  4 hours

 Contents: Introduction to modern symmetric encryption technology, including triple DES, Blowfish, RC5, stream cipher

 Key points: intermediate encounter attack, double DES, triple DES security strength

 Difficulty points: double DES algorithm, triple DES algorithm

 Requirements: Understand the modern symmetric encryption technology, understand the working principle of the main modern symmetrical password


 (5)Network security communication

 Credit hours:  3 hours

 Contents: Introduction to the transmission security of modern symmetric encryption technology, including encryption settings, key distribution and generation of random numbers

 Key points: link encryption, end-to-end encryption, security analysis, centralized key distribution scheme KDC, hierarchy of key distribution, generation of random numbers

 Difficulty points: centralized key distribution scheme KDC, link encryption and end-to-end encryption

 Requirements: Understand the transmission security of modern symmetric encryption technology, understand the process of key distribution and the principle of generating random numbers


 (6)Public-key cryptosystem

 Credit hours:  4 hours

 Contents: the public key cryptography system, including its mathematical principles and RSA algorithm

 Key points: public key encryption (asymmetric encryption) model, RSA public key encryption algorithm, Diffie-Hellman key exchange algorithm, digital certificate, public key cryptography

 Difficulty points: public key encryption and public key authentication, Fermat theorem, Euler function, Euler theorem, RSA encryption and decryption, RSA computational efficiency and security, public key based key allocation,

 Requirements: Understand the public key cryptosystem, understand the basic principles of public key cryptography, master the RSA algorithm and Diffie-Hellman key exchange algorithm


 (7)Message authentication and Hash Functions

 Credit hours:  4 hours

 Contents: Introduction to message authentication, including message encryption, message authentication code and hash function

 Key points: the realization of message authentication, the three authentication functions and their similarities and differences, the message authentication code MAC a way to achieve confidentiality of information, integrity and undeniable line of the program

 Difficulty points: three kinds of authentication function and its similarities and differences, MAC implementation

 Requirements: Understanding the implementation of message authentication, understanding the message authentication code MAC implementation


 (8)Hash algorithm

 Credit hours:  3 hours

 Contents: The hash algorithm is introduced

 Key points: the characteristics of hash function, Hash function of the general structure, MD5 algorithm

 Difficulty points: MD5 algorithm steps, compression functions and security

 Requirements: Understanding the common structure of hash functions, understanding the steps of the MD5 algorithm, compressing functions and security


 (9)Digital signature and authentication protocol

 Credit hours:  4 hours

 Contents: Introduction to digital signatures and authentication protocols, including their key concepts, features and classifications

 Key points: Direct digital signatures vs. arbitration Digital signatures, authentication and exchange protocols, replay attacks

 Difficulty points: the main content and the role of digital signatures, replay attack countermeasures

 Requirements: Understand the characteristics of digital signatures, requirements and classification, understand the main process of authentication protocol


 (10)Authentication applications

 Credit hours:  4 hours

 Contents: Introduction to authentication applications, including Kerberos and X.509

 Key points: Kerberos, X.509, Kerberos architecture and implementation process, CA certificate main content, digital signature verification, X.509 hierarchy

 Difficulty points: CA hierarchy, Kerberos graphical authentication process

 Requirements: Understand the authentication application, understand the authentication process for Kerberos and X.509


 (11)E-mail security

 Credit hours:  3 hours

 Contents: Introduction to the security of e-mail, including PGP, S/MIME and secure e-mail mail configuration

 Key points: PGP confidentiality, integrity and undeniable solution, S/MIME, e-mail security configuration

 Difficulty points: PGP encryption and authentication

 Requirements: Understand the security of e-mail, understand the PGP and S/MIME protocols


 (12)IP security

 Credit hours:  4 hours

 Contents:  Introduce the security at the network layer, including its communication protocol, operation mode and key exchange management protocol

 Key points: IPSec application and advantages, AH protocol, ESP protocol, transmission mode, tunnel mode, key exchange management protocol IKE

 Difficulty points: IPSec protocol, transmission mode and tunnel mode

 Requirements: Understand the principles of network layer security protocols and understand how IPSec works


 (13)Web security

 Credit hours:  4 hours

 Contents: Introduction to Web security, including SSL / TLS and SET

 Key points: SSL (Secure Sockets Layer), SSL connection and SSL session, SSL record protocol, SSL handshake protocol, TLS (transport layer security), SET (secure electronic transaction)

 Difficulty points: SSL record protocol, the handshake protocol flow, SET in the two-way signature, digital envelope encryption technology

 Requirements: Understand the principles of transport layer and application layer security protocol, understand how SSL and SET work

 Experimental Teaching

 Yes

 Teaching Method

Course teaching is based on class teaching, homework, class discussion, and network communication.

 Examination Method

Homework and class performance30%

Final exam70%

 Teaching Materials and Reference Books

 Stinson D R. 密码学原理与实践: 第二版[M]. 电子工业出版社, 2003.

 William Stallings,  密码编码学与网络安全原理与实践, 2015, 电子工业出版社.

 Prepared by Whom and When

 Yong Xu, 2019.4.1


《密码学与安全协议》实验教学大纲

课程代码

045101921

课程名称

密码学与安全协议(MOOC

英文名称

Cryptography and Security ProtocolsMOOC

课程类别

专业基础课

选修课

课程性质

必修

选修课

学时

总学时:48    实验:16   实习:0   其他:0

学分

2.5

开课学期

第五学期

开课单位

计算机科学与工程学院

适用专业

信息安全;网络工程

授课语言

中文

先修课程

计算机网络、信息安全数学基础

毕业要求(专业培养能力)

本课程对学生的毕业要求如下:

1. 设计/开发解决方案:能够设计针对信息安全复杂工程问题的解决方案,设计满足特定需求的信息安全解决方案,并能够在设计环节中体现创新意识,考虑社会、健康、安全、法律、文化以及环境等因素。

2. 研究:能够基于科学原理并采用科学方法对信息安全复杂工程问题进行研究,包括设计实验、分析与解释数据、并通过信息综合得到合理有效的结论。

3. 使用现代工具:能够针对信息安全复杂工程问题,开发、选择与使用恰当的技术、资源、现代工具和信息技术工具,包括对信息安全复杂工程问题的预测与模拟,并能够理解其局限性。

4. 工程与社会:能够基于信息安全工程相关背景知识进行合理分析,评价信息安全专业工程实践和复杂工程问题解决方案对社会、健康、安全、法律以及文化的影响,并理解应承担的责任。

课程培养学生的能力(教学目标)

完成课程后,学生将具备以下能力:

1)掌握密码学与安全协议的基础知识,培养学生发现问题、解决问题的基本能力。

2)掌握密码学与安全协议的基本技能,学生具有信息安全初步实践能力。

通过本课程的学习,学生应掌握现代密码学的基本原理,了解现代密码学中的主要方法和关键技术,初步掌握一些现代密码学中的高级课题。

课程简介

本课程介绍了密码学与安全协议相关的基础知识和技术方法。系统讲授了网络安全通信、网络安全协议和网络安全实现的基本原理、方法和策略。

本课程由两部分构成。第一部分网络安全通信从传统密码理论、公钥密码理论详细讨论了网络安全通信实现的原理,涉及到点到点加密传输、端到端加密传输、消息认证码、Hash函数以及数字签名和公钥证书等内容。第二部分网络安全实现讨论了重要的网络安全工具和应用软件,包括鉴别应用、电子邮件的安全性、IP的安全性和Web安全。

主要仪器设备与软件

安装Wireshark软件的PC

实验报告

本门课程的实验要求学生能完成给定课题,实验报告中包括实验的基本步骤说明、对关键技术的分析与理解,包括实验过程和结果的相关图表加以说明。

考核方式

考核成绩由实验课考勤和实验报告的完成情况两部分组成

教材、实验指导书及教学参考书目

 Stinson D R. 密码学原理与实践: 第二版[M]. 电子工业出版社, 2003.

William Stallings,  密码编码学与网络安全原理与实践, 2015, 电子工业出版社.

制定人及发布时间

许勇   2019.4.1


《密码学与安全协议》实验教学内容与学时分配

实验项目编号

实验项目名称

实验学时

实验内容提要

实验类型

实验要求

每组人数

主要仪器设备与软件

1

网络数据包监听与分析

4

了解、熟悉Sniffer软件的主要模块和特点,能用Sniffer采集数据包并对其进行网络安全事件的深入分析。

综合性

必做

1

硬件:计算机;

软件:Windows操作系统、Sniffer

2

现代加密系统设计与实现

4

开发实现一个S-DESRSA加解密系统,在界面上输入明文和密钥,系统可以输出正确的密文。通过曲线图分析算法的雪崩效应。

综合性

必做

1

硬件:计算机;

软件:Windows操作系统、Visual Studio等编程环境

3

数字证书:原理、配置、编程与应用

8

利用浏览器导出数字证书,描述数字证书基本原理和主要内容,生成、配置并管理数字证书,编写一个带GUI的证书信息读取器(选做);选取一种证书的典型应用(如电子邮件)进行过程描述并实践。

综合性

必做

2

硬件:计算机、网络;

软件:Windows操作系统、openSSLOutlook


 “Cryptography and Security Protocols” Syllabus

Course Code

045101921

Course Title

Cryptography and Security ProtocolsMOOC

Course Category

Specialty Basic Courses

Course Nature

Compulsory Course

Class Hours

48

Credits

2.5

Semester

5th

Institute

School of Computer Science and Engineering

Program Oriented

Information Security, Network Engineering

Teaching Language

Chinese

Prerequisites

Computer Networks, Mathematical Fundamentals for Information Security

Student Outcomes (Special Training Ability)

 1. Designing and Developing Solutions: with the ability to design the solutions to complex and specific engineering problems in information security, to have an innovative sense in the design phase by considering the factors of society, health, safety, law and culture.

 2. Research: with the ability to conduct investigations on the complex engineering problems based on scientific principles and adopting scientific methods, including the experiment designs, analyzing and interpretation of data, and to obtain valid conclusions by information synthesis.

 3. Applying the Modern Tools: with the ability to develop, select and use the appropriate techniques, resources, and modern tools and IT tools, including prediction and simulation, to solve the complex engineering activities in information security and understand the limitations.

4. Engineering and Society: with the ability to reasonably analyze and evaluate the impacts of professional engineering practice and solutions to the complex engineering problems to society, health, safety, law and culture issues by using the background knowledge of information security engineering, to understand the consequent responsibility.

Teaching Objectives

 After teaching, students have the following abilities

1Understanding the fundamental knowledge of the cryptography and security protocols, make the students have the ability to design the solutions to complex and specific engineering problems in information security.

2Understanding the basic technologies of the cryptography and security protocols,make the students have the ability to solve the complex engineering activities in information security.

Course Description

This course introduces the fundamental knowledge and technology of the cryptography and security protocols, including the principles, methods and policies of network security communication, network security protocols and network security implements.

This course consists of two parts. The first part is network security communication. Based on conventional cryptosystem and public-key cryptosystem, the principles of network security implements are discussed, which includes link to link encryption, end to end encryption, MAC, Hash function, digital signature and digital certificate. In the second part, the important network security tools and application of network security implements are discussed, which include authentication, email security, IP security and web security.

Instruments and Equipments

PC equipped with Wireshark

Experiment Report

This course requires student to finish the given tasks and submit lab reports, which includes description of the basic steps of the experiment, analysis and understanding of key technologies and diagrams of the experimental process and results.

Assessment

Attendance of experimental courses and completion of experimental reports.

Teaching Materials and Reference Books

 Stinson D R. 密码学原理与实践: 第二版[M]. 电子工业出版社, 2003.

William Stallings,  密码编码学与网络安全原理与实践, 2015, 电子工业出版社.

Prepared by Whom and When

Yong Xu, 2019.4.1

 “Cryptography and Security Protocols”Experimental Teaching Arrangements

No.

Experiment Item

Class Hours

Content Summary

Category

Requirements

Number of Students Each Group

Instruments, Equipments and Software

1

Network Packet Monitoring and Analysis

4

Understand the main modules and features of Sniffer software, use Sniffer to collect data packets and its network security events in-depth analysis.

Comprehensive

Compulsory

1

Hardware: computer;

Software: Windows operating system, Sniffer

2

Design and Implementation of Modern Encryption System

4

Develop an S-DES and RSA encryption and decryption system with the following characteristics: If you enter plain text and key on the interface, the system can output the correct ciphertext. Analyze the avalanche effect of the algorithm by graph.

Comprehensive

Compulsory

1

Hardware: computer;

Software: Windows operating system, Visual Studio or other programming environment

3

Digital certificate: principle, configuration, programming and application

8

Use a browser to export a digital certificate, describe its basics and main content, and learn how to generate, configure, and manage it. Write a certificate reader with GUI (optional). Select a typical application of a certificate (such as an e-mail application) to describe and practice the process.

Comprehensive

Compulsory

2

Hardware: computer, network;

Software: Windows operating system, openSSL, Outlook

思政建设内容


  1. 育人目标

1.实现专业知识教学与立德树人教育的有机融合;

2.激发学生“实干兴邦”的爱国奋斗精神。

  1. 教学特色

以改革开放以来中国互联网的成长与发展、新时代实施国家网络空间安全战略的机遇与挑战两大主线,呈现当代大学生肩负的历史使命和战略任务。


  1. 预期成效

1.发挥“密码学与安全协议”导论课堂教学的育人主渠道作用,实现专业教育与课程思政的有效结合;

2.结合国家网络空间安全战略、大数据战略、“互联网+”行动等一系列重大决策,激发学生的爱国情怀