关于举行德国维尔茨堡大学Frank Würthner教授学术报告的通知

2019-10-10 153

报告题目:Color Pigment derived Organic Semiconductors

报  告 人:Prof. Frank Würthner  (德国国家科学院院士)

邀 请  人:马於光 教授

报告时间:2019年10月14日(星期一)下午15:00

报告地点:北区科技园1号楼发光国家重点实验室N308A报告厅


报告摘要:

In recent years we could witness a shift of paradigm in organic semiconductor research towards dyes and color pigments. Thus, after two decades of research focused on conjugated polymers and oligothiophene as well as acene based organic semiconductor molecules most recent work in several laboratories demonstrated high charge carrier mobilities > 1 cm2V-1s-1 for various classes of dyes and pigments. These results are remarkable owing to the presence of dipolar functional groups in these compounds which was believed to result in large reorganization energies and bad transport properties. Obviously this view needs to be reassessed. In particular for organic photovoltaics the success of several low band gap conjugated oligomers and polymers (containing dipolar functional groups) as well as small molecule based organic colorants appears highly promising.

In this lecture I will give an overview on our work on n-type organic semiconductors based on naphthalene and perylene bisimides and p-type organic semiconductors based on merocyanines, squaraines and diketopyrrolopyrroles. A particular focus will be given on the most unusual highly dipolar merocyanine dyes which exhibit outstanding performance in bulk heterojunction solar cells with PCE > 6%. Our recent demonstration of hole mobilities up to 1.3 cm2V-1s-1 in organic thin film devices and up to 8.6 cm2V-1s-1 in organic single crystals clearly corroborates the view that the presence of dipolar groups does not imply bad transport properties. Dyes and colorants are accordingly very versatile for organic electronics and organic photovoltaics.



华南理工大学发光材料与器件全国重点实验室版权所有

地址:广东省广州市五山路381号华南理工大学北区科技园1号楼

电话:020-87113184 传真:020-87113184

邮箱:skllmd@scut.edu.cn

欢迎关注发光材料与器件全国重点实验室公众号