
基本信息
联系方式:jiangsheng@scut.edu.cn
招生专业
个人简介
蒋盛,长期致力于自旋电子学相关应用研究,特别是磁随机存储器(MRAM)和自旋纳米振荡器的物理机制及其在磁子学、微波通讯和人工智能等方面的应用研究。共发表论文三十篇,其中一作9篇。作为项目负责人主持国家自然科学基金青年基金项目1项,太仓市科技发展计划项目面上项目1项。未来计划开展磁随机存储芯片和纳米微波振荡器相关的应用研究,包括它们在存储芯片、类脑计算、信息通讯等方向的应用研究。同时计划开发用于MRAM测试和自旋电子学科研的高端仪器设备。
Dr. Sheng Jiang devotes to researching the novel physical phenomena and applications of spintronics micro- and nano-devices, especially magnetic random access memory (MRAM) and spin torque nano-oscillators, which hold great promise for applications in magnonics, wireless communication, and artificial intelligence. Dr. Sheng Jiang has published over 30 high-impact papers (9 first-author and co-first-author papers) in Nature Communication, Physical Review Letters, Materials Today, Physical Review Applied, Nanoscale et al. He has received Youth Funding from National Natural Science Foundation and general funding from Taicang Science and Technology Development Plan. His research interest includes magnetic random access memory, microwave nano-oscillators, and their application in memory chips, neuromorphic computing, and wireless communication et al. He also plans to develop instruments and equipment for MRAM testing and spintronics research.
教育经历
2014-10至2018-10, 瑞典皇家工学院, 博士
2011-9至2014-6, 东南大学, 硕士
2007-9至2011-6, 东南大学, 学士
工作经历
2022-8至今, 华南理工大学, 预聘助理教授(副教授职称)
2020-10至2022-7, 西北工业大学,副教授
2018-10至2020-9, NanOsc AB, 研发工程师(兼职)
2018-11至2020-10, 瑞典哥德堡大学, 博士后
研究方向
自旋电子学、磁随机存储芯片、纳米微波振荡器及其在微波通讯与类脑计算上的应用
授课课程
《集成电路制造技术》、《Microelectronic Fabrication Processing Technology》
学术任职
担任Nanoscale, Applied Physics Letters, IEEE Electron Devices Letters, Journal of Applied Physics 等多个国际期刊审稿人
科研项目
1. 国家自然科学基金委员会,青年项目,2022-01至2024-12,主持
2. 太仓市科技发展计划项目,面上项目,2021-08 至2023-07,主持
代表性科研成果
[1] S. Jiang*, Z. Huang*, Q. An, W. Zhang, Y. Yin, D. Zhang, J. Du, B. You, J. Zheng, W. Liu, and Y. Zhai, Magnetism and Spin Transport at Permalloy/Cu1−xTbx Interfaces Sheng, Physical Review B 105, 184421 (2022).
[2] K. Shi*, W. Cai*, S. Jiang*, D. Zhu, K. Cao, Z. Guo, J. Wei, A.. Du, Z.. Li, Y. Huang, J. Yin, J. Åkerman, and W. Zhao, Observation of Magnetic Droplets in Magnetic Tunnel Junctions, SCIENCE CHINA Physics, Mechanics & Astronomy, 65, 227511. (2022).
[3] M. Ahlberg, S. Chung, S. Jiang, A. Frisk, M. Khademi, R. Khymyn, A. A. Awad, Q. T. Le, H. Mazraati, M. Mohseni, M. Weigand, I. Bykova, F. Groß, E. Goering, G. Schütz, J. Gräfe, and J. Åkerman. Freezing and thawing magnetic droplet solitons. Nature Communications, 13, 2462 (2022).
[4] D. Wang, Z. Wang, N. Xu, L. Liu, H. Lin, X. Zhao, S. Jiang, W. Lin, N. Gao, M. Liu, and G. Xing, Synergy of Spin-Orbit Torque and Built-In Field in Magnetic Tunnel Junctions with Tilted Magnetic Anisotropy: Toward Tunable and Reliable Spintronic Neurons, Advanced Science 2022, 2203006 (2022).
[5] C. C. M. Capriata, S. Jiang, J. Akerman,, & B. G. Malm, Impact of Random Grain Structure on Spin-Hall Nano-Oscillator Modal Stability. IEEE Electron Device Letters, 43, 312 (2022).
[6] G. Cao.*, S. Jiang*, J. Åkerman, and J. Weissenrieder, Femtosecond Laser Driven Precessing Magnetic Gratings, Nanoscale 13, 3746 (2021)
[7] W. Zhang, P. K. J. Wong, S. Jiang, Q. Chen, W. Huang, & A. T. S. Wee, Integrating spin-based technologies with atomically controlled van der Waals interfaces. Materials Today, 51, 350(2021).
[8] A. J. Eklund , M. Dvornik , F. Qejvanaj, S. Jiang, S. Chung, J. Åkerman, and B. G. Malm, Impact of intragrain spin wave reflections on nanocontact spin torque oscillators, Physical Review B 103, 214433 (2021)
[9] S. Jiang, R. Khymyn, S. Chung, Q. Tuan Le, L. Herrera Diez, A. Houshang, M. Zahedinejad, D. Ravelosona, and J. Åkerman, Reduced spin torque nano-oscillator linewidth using He+ irradiation, Applied Physics Letters,116, 072403 (2020). (“Featured Article”)
[10] S. Jiang, M. Ahlberg, S. Chung, A. Houshang, R. Ferreira, P. P. Freitas, J. Åkerman, Magnetodynamics in orthogonal nanocontact spin-torque nano-oscillators based on magnetic tunnel junctions, Applied Physics Letters,115, 152402 (2019).
[11] S. Jiang, S. Chung, Q. T. Le, H. Mazraati, A. Houshang, and J. Åkerman, Using magnetic droplet nucleation to determine the spin torque efficiency and asymmetry in Cox(NiFe)1−x thin films, Physical Review Applied, 10, 054014 (2018).
[12] S. Jiang, S. R. Etesami, S. Chung, Q. T. Le, A. Houshang, and J. Åkerman, Impact of the Oersted field on droplet nucleation boundaries, IEEE Magnetics Letters, 9, 3104304 (2018).
[13] S. Jiang, S. Chung, L. H. Diez, Q. T. Le, F. Magnusson, D. Ravelosona, and J. Åkerman, Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, AIP Advances 8, 065309 (2018).
[14] S. Chung, Q Tuan Le, M. Ahlberg, A. A Awad, M. Weigand, I. Bykova, R. Khymyn, M. Dvornik, H. Mazraati, A. Houshang, S. Jiang, T. A. Nguyen, E. Goering, G. Schütz, J. Gräfe, and J. Åkerman, Direct observation of Zhang-Li torque expansion of magnetic droplet solitons, Physical Review Letters 120, 217204 (2018).
[15] M. Zahedinejad, H. Mazraati, H. Fulara, J. Yue, S. Jiang, A. A. Awad, and J. Åkerman, CMOS compatible W/CoFeB/MgO spin Hall nano-oscillators with wide frequency tenability, Applied Physics Letters 112, 132404 (2018).
[16] S. Jiang, L. Sun, Y. Yin, Y. Fu, C. Luo, Y. Zhai, and H. Zhai, Ferromagnetic resonance linewidth and two-magnon scattering in Fe1−xGdx thin films, AIP Advances 7, 056029 (2017).
[17] L. Sun, J. Yue, S. Jiang, Y. Xu, Q. Li, Q. Chen, X. Zhou, Z. Huang, Z. Yao, Y. Zhai, and H. Zhai, Influence of Cr Layer Thickness on the Static and Dynamic Performances of Tb/Cr/Ni 80 Fe 20 Structure, J. Alloys Compd. 695, 1324 (2017).