Name:Di Wu
Introduction:
Address: School of Mathematics, South China University of Technology, Guangzhou, 510640, P.R. China
Email address: wudi@scut.edu.cn
EDUCATION & RESEARCH EXPERIENCE:
Jan. 2021-present: Assistant Professor, South China University of Technology
Dec. 2018-Dec. 2020: Boya postdoc (named postdoctoral fellowship ) in School of Mathematical Sciences of Peking University (joined work with Prof. Zhifei Zhang).
Dec. 2017-Nov. 2018: Postdoc of Institut de Mathématiques de Toulouse (joined work with Prof. Matthieu Hillairet at IMAG).
Oct.2015-Nov.2017: PhD candidate of mathematics at Université Paris Diderot (advisor: Prof. Isabelle Gallagher) & PhD candidate of mathematics of Wuhan University (adivisor: Prof. Chaojiang Xu).
Thesis of Phd: Cauchy problem for the incompressible Navier-Stokes equation with an external force and Gevrey smoothing effect for the Prandtl equation.
Sep.2012-Sep.2015: MD-PhD candidate of mathematics of Wuhan University (advisor: Prof. Chaojiang Xu)
Sep. 2008-Jun. 2012: Bachelor of mathematics at Wuhan University.
PUBLICATIONS:
Wei-Xi Li, Di Wu & Chao-Jiang Xu, Gevrey class smoothing effect for the Prandtl equation. SIAM J. Math. Anal. 48(2016), no. 3, 1672-1726.
Di Wu, Cauchy problem for the incompressible Navier-Stokes equation with an external force, submitted(2019).
Di Wu, Blow-up criterion and examples of global solutions of forced Navier-Stokes equations, Acta. Appl. Math. Online(2020).
Matthieu Hillairet & Di Wu, Effective viscosity of a polydispersed suspension, J. Math. Pures Appl. 138(2020), 4113-447.
Matthieu Hillairet, Christophe Lacave & Di Wu, A homogenized limit for the 2D Euler equations in a perforated domain, Analysis & PDE, 2020(to appear).
Qi Chen, Di Wu & Zhifei Zhang, On the $L^\infty$ stability of Prandtl expansions in Gevrey class, submitted(2020)
Wendong Wang, Di Wu & Zhifei Zhang, Scaling invariant Serrin criterion via one velocity component for the Navier-Stokes equations, submitted(2020).
Qi Chen, Di Wu & Zhifei Zhang, On the $L^\infty$ stability of steady Prandtl expansions in Sobolev space, preprint(2020)